|
|
Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam |
SUN Rongrong1, YAO Meiyi1( ), LIN Xiaodong1( ), ZHANG Wenhuai1, QIU Yunlong2, HU Lijuan1, XIE Yaoping1, YANG Jian3, DONG Jianxin4, CHENG Guoguang5 |
1.Institute of Materials, Shanghai University, Shanghai 200072, China 2.Zhongxing Energy Equipment Co., Ltd., Haimen 226126, China 3.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 4.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 5.State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam. Acta Metall Sin, 2022, 58(5): 610-622.
|
Abstract Zirconium alloys can react with water to produce hydrogen under a loss of coolant accident, which can lead to a hydrogen explosion. Therefore, the idea of developing accident tolerant fuel (ATF) is proposed, which involves nuclear fuel and cladding. FeCrAl alloy is a promising candidate material for ATF cladding. Studying the effects of alloying elements on the corrosion behavior and mechanism of FeCrAl alloy can provide a theoretical basis and guidance for optimizing its composition. Therefore, in this study, the effect of Ti on the corrosion behavior of Fe22Cr5Al3Mo alloy in 500oC superheated steam was investigated. Three types of Fe22Cr5Al3Mo-xTi (x = 0, 0.5, 1.0, mass fraction, %) alloys, designated as 0Ti, 0.5Ti, and 1.0Ti alloys, respectively, were fabricated and corroded in 500oC and 10.3 MPa superheated steam using a static autoclave. The microstructure, crystal structure and composition of the samples before and after corrosion were observed using XRD, OM, FIB/SEM, EDS, and TEM. The results show that the oxide films formed on the Fe22Cr5Al3Mo-xTi alloys in 500oC and 10.3 MPa superheated steam present a trilayer structure consisting of an outer oxide layer of Fe2O3, a middle layer of hcp-Cr2O3, and an inner layer of Al2O3. There is α-(Fe, Cr) in the Al2O3 layer near the oxide/metal interface. The ratio, R, of Cr oxide film thickness to total oxide film thickness for 0Ti, 0.5Ti, and 1.0Ti alloys follows the order R0.5Ti > R1.0Ti > R0Ti, which may explain the better corrosion resistance of 0.5Ti alloy than 1.0Ti and 0Ti alloys. The addition of Ti can reduce the total thickness of the oxide films and improve the corrosion resistance of the alloys by increasing the thickness of the protective hcp-Cr2O3 film and inhibiting the precipitation of Cr23C6.
|
Received: 12 May 2021
|
|
Fund: National Natural Science Foundation of China(51871141) |
About author: YAO Meiyi, professor, Tel: 17721378029, E-mail: yaomeiyi@shu.edu.cnLIN Xiaodong, Tel: 18609825539, E-mail: xdlin@shu.edu.cn
|
1 |
Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
|
2 |
Little E A, Stow D A. Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor [J]. J. Nucl. Mater., 1979, 87: 25
doi: 10.1016/0022-3115(79)90123-5
|
3 |
Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441: 650
doi: 10.1016/j.jnucmat.2012.04.006
|
4 |
Pint B A, Terrani K A, Yamamoto Y, et al. Material selection for accident tolerant fuel cladding [J]. Metall. Mater. Trans., 2015, 2: 190
|
5 |
Lim J, Nam H O, Hwang I S, et al. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments [J]. J. Nucl. Mater., 2010, 407: 205
doi: 10.1016/j.jnucmat.2010.10.018
|
6 |
Engkvist J, Bexell U, Grehk M, et al. High temperature oxidation of FeCrAl-alloys-influence of Al-concentration on oxide layer characteristics [J]. Mater. Corros., 2009, 60: 876
|
7 |
Pint B A, Unocic K A, Terrani K A. Effect of steam on high temperature oxidation behaviour of alumina-forming alloys [J]. Mater. High Temp., 2015, 32: 28
doi: 10.1179/0960340914Z.00000000058
|
8 |
Kögler R, Anwand W, Richter A, et al. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy [J]. J. Nucl. Mater., 2012, 427: 133
doi: 10.1016/j.jnucmat.2012.04.029
|
9 |
Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
|
10 |
Dolley E J, Schuster M, Crawford C, et al. Mechanical behavior of FeCrAl and other alloys following exposure to LOCA conditions plus quenching [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Switzerland: Springer International Publishing, 2018: 185
|
11 |
Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment [J]. Corros. Sci., 2015, 94: 459
doi: 10.1016/j.corsci.2015.02.027
|
12 |
Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism [J]. Surf. Coat. Technol., 2001, 135: 291
doi: 10.1016/S0257-8972(00)00989-0
|
13 |
Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
|
14 |
Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
|
|
褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
|
15 |
Herbelin J M, Mantel M, Cogne J Y. Future trends of FeCrAl alloys for automative catalytic converters to reach mass production [Z]. Germany: Werkstoff-Informationsgesellschaft mbH, Frankfurt am Main, 1997: 79
|
16 |
Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
|
17 |
Kitajima Y, Hayashi S, Ukai S, et al. The effect of additional elements on oxide scale evolution of Fe-20at.%Cr-10at.%Al alloy at 900℃ in air [J]. Mater. Sci. Forum., 2008, 595-598: 1013
doi: 10.4028/www.scientific.net/MSF.595-598.1013
|
18 |
Huang T H, Naumenko D, Song P, et al. Effect of titanium addition on alumina growth mechanism on yttria-containing FeCrAl-base alloy [J]. Oxid. Met., 2018, 90: 671
doi: 10.1007/s11085-018-9861-6
|
19 |
Schutze M. Lifetime Modelling of High Temperature Corrosion Processes EFC 34 [M]. Boca Raton, FL, USA: CRC Press, 2001: 66
|
20 |
Dang J, Zhou P, Shi H Y. Influence of Nb/Ti on corrosion resistance properties of low chromium ferritic stainless steels [J]. Iron Steel Van Tit, 2020, 41: 147
|
|
党 杰, 周 鹏, 史洪源. Nb、Ti对低铬铁素体不锈钢腐蚀性能的影响 [J]. 钢铁钒钛, 2020, 41: 147
|
21 |
Li X, Lu X L, Bi H Y. Effect of Nb, Ti on the properties of 15Cr ferritic stainless steel [A]. Proceedings of the 8th (2011) China Iron and Steel Annual Meeting [C]. Beijing: Metallurgical Industry Press, 2011: 535
|
|
李 鑫, 陆晓莉, 毕洪运. Nb、Ti对15Cr铁素体不锈钢性能的影响 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2011: 535
|
22 |
Zhang X, Sun Q S, Du W. Effect of Nb, Ti on structure and property of ultra-low carbon and nitrogen ferritic stainless steel [A]. Proceedings of the 4th Annual Youth Academic Conference of China Society of Metals [C]. Beijing: Iron & Steel, 2008: 138
|
|
张 鑫, 孙全社, 杜 伟. Nb、Ti对超低碳氮430铁素体不锈钢组织和性能的影响 [A]. 第4届中国金属学会青年学术年会论文集 [C]. 北京: 钢铁, 2008: 138
|
23 |
Yu Y N. Fundamentals of Materials Science [M]. Beijing: Higher Education Press, 2006: 781
|
|
余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006: 781
|
24 |
Qian Y, Sun R R, Zhang W H, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy [J]. Acta Metall. Sin., 2020, 56: 321
|
|
钱 月, 孙蓉蓉, 张文怀 等. Nb对Fe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2020, 56: 321
|
25 |
Li N, Parker S S, Wood E S, et al. Oxide morphology of a FeCrAl alloy, Kanthal APMT, following extended aging in air at 300oC to 600oC [J]. Metall. Mater. Trans., 2018, 49A: 2940
|
26 |
Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
|
27 |
Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS [J]. Acta Phys. Chim. Sin., 2020, 36: 2003026
|
|
戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究 [J]. 物理化学学报, 2020, 36: 2003026
|
28 |
Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
doi: 10.1007/s11665-018-3665-3
|
29 |
Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19: 46
|
|
张志刚, 牛 焱, 张学军. 铁-铬-铝合金中铬的第三组元作用 [J]. 钢铁研究学报, 2007, 19: 46
|
30 |
Terrani K A, Pint B A, Kim Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments [J]. J. Nucl. Mater., 2016, 479: 36
doi: 10.1016/j.jnucmat.2016.06.047
|
31 |
Pint B A, Terrani K A, Rebak R B. Steam oxidation behavior of FeCrAl cladding [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Switzerland: Springer International Publishing, 2018: 235
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|