Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 215-224    DOI: 10.11900/0412.1961.2021.00100
Research paper Current Issue | Archive | Adv Search |
Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons
ZHANG Jinyong1,2(), ZHAO Congcong1, WU Yijin1, CHEN Changjiu1, CHEN Zheng1, SHEN Baolong1()
1.School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
2.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons. Acta Metall Sin, 2022, 58(2): 215-224.

Download:  HTML  PDF(3290KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high-entropy-amorphous alloy (also called a pseudo-high-entropy alloy), as one of the categories of high-entropy alloys, is being developed as a new type of functional and structural high-strength material due to its advantages of high entropy and amorphousness. To further develop a new high-entropy-amorphous alloy, based on the results of previous studies, (Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x (x = 10-18, atomic fraction, %) alloys were synthesized (hereafter, alloys 10B, 11B, 13B, 15B, and 18B). The ribbons with a thickness of 20-30 μm and a width of about 1.5 mm were produced by single-roller melt-spinning. The alloy ribbons were annealed at different temperatures and then characterized by XRD, DSC, TEM, SEM, OM, universal tensile testing machine, and Vickers hardness tester. The results show that the addition of B improves the glass-forming ability and thermal stability of these alloys. The ribbons are fully amorphous at the low B content of 11%. Two exotherms were observed based on the DSC curves for the 11B-18B as-spun ribbons. The crystallization behaviors of 11B-18B alloy ribbons are as follows during heating: 11B and 13B, [am]→[am′ + bcc]→[am″ + bcc + fcc]→[bcc + fcc + M23B6]→[fcc + M23B6]; 15B, [am]→[am′ + fcc + bcc]→[am″ + bcc + fcc + M23B6]→[bcc + fcc + M23B6]→[fcc+ M23B6]; and 18B, [am]→[am′ + fcc]→[am″ + fcc + M23B6]→[fcc + M23B6] (The am′ and am″ are the residual amorphous phases after the first and the second exotherms, respectively)

Key words:  high-entropy-amorphous alloy ribbon      structural characteristic      heating-induced crystallization behavior      phase composition      mechanical property     
Received:  03 March 2021     
ZTFLH:  TG139.8  
Fund: Fundamental Research Funds for the Central Universities(2018GF13)
About author:  SHEN Baolong, professor, Tel: (0516)83591877, E-mail: shenbaolong@cumt.edu.cnZHANG Jinyong, associate professor, Tel: (0516)83591879, E-mail: jyzhang@cumt.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00100     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/215

Fig.1  XRD spectra of 10B-18B as-cast alloy ingots (a) and as-spun alloy ribbons (b)
Fig.2  Bright-field TEM image and SAED pattern (inset) (a), and HRTEM image (b) of the 11B as-spun ribbon
Fig.3  DSC curves of 11B-18B as-spun alloy ribbons (a) and changes in the onset temperatures of the first and second exotherms (Tx1 and Tx2) with B content (b) (Heating rate is 0.67 K/s, Tg—the glass transition temperature)
Fig.4  DSC curves measured at different heating rates of 0.17-0.67 K/s for 11B-18B as-spun alloy ribbons (a) and Kissinger plots of the peak temperature as a function of heating rate of the first and second exothermic peaks (b) (Ф—heating rate, Tp—crystallization peak temperature, R—gas constant, Ep1—activation energy of the first exotherm, Ep2—activation energy of the second exotherm)
Fig.5  XRD spectra of 11B (a), 15B (b), and 18B (c) amorphous alloy ribbons after annealing at different temperatures for 1800 s (The borides are the M23B6 (M = LTM (later transition metal), Mn, Cr) intermetalic compounds)
Fig.6  Bright-field (a) and dark-field (b) TEM images, SAED pattern (c), and HRTEM image (d) of 11B amorphous alloy ribbon after annealing at 725 K for 1800 s (The inset in Fig.6d is the corresponding fast Fourier transform (FFT) diffractogram, d—interplanar spacing)
Fig.7  Bright-field TEM image (a), SAED pattern (b), and HRTEM images (c, d) of 15B amorphous alloy ribbon after annealing at 711 K for 1800 s
Fig.8  Changes in the structure and Vickers hardness with annealing temperature (annealing for 1800 s) for 11B-15B alloy ribbons (The solid and open symbols indicate plastic and brittle samples, respectively. am' and am'' are the residual amorphous phases after the first and the second exotherms, respectively)
Fig.9  SEM images of 11B alloy ribbons after bending 180° with different magnifications (a), and Vickers hardness of 10B-18B as-spun alloy ribbons vs the B content (b)
1 Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Zhu Z W , Gu L , Xie G Q , et al . Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses [J]. Acta Mater., 2011, 59: 2814
3 Li J G , Huang R R , Zhang Q , et al . Mechnical properties and behaviors of high entropy alloys [J]. Chin. J. Theor. Appl. Mech., 2020, 52: 333
李建国, 黄瑞瑞, 张 倩 等 . 高熵合金的力学性能及变形行为研究进展 [J]. 力学学报, 2020, 52: 333
4 Lu Z P , Lei Z F , Huang H L , et al . Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
吕昭平, 雷智锋, 黄海龙 等 . 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
5 Inoue A , Wang Z , Louzguine-Luzgin D V , et al . Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys [J]. J. Alloys Compd., 2015, 638: 197
6 Zhao S F , Shao Y , Liu X , et al . Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
7 Ding J , Inoue A , Han Y , et al . High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys [J]. J. Alloys Compd., 2017, 696: 345
8 Wang F , Inoue A , Kong F L , et al . Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86-89B11-14 amorphous phase [J]. Acta Mater., 2019, 170: 50
9 Wang F , Inoue A , Kong F L , et al . Formation, thermal stability and mechanical properties of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125-Mo0.0625Nb0.0625)100 - x B x (x = 7-14) amorphous alloys [J]. J. Alloys Compd., 2020, 825: 153858
10 Zhao C C , Inoue A , Kong F L , et al . Novel phase decomposition, good soft-magnetic and mechanical properties for high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100 - x B x (x = 9-13) amorphous alloys [J]. J. Alloys Compd., 2020, 843: 155917
11 Campos I , Islas M , González E , et al . Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing [J]. Surf. Coat. Technol., 2006, 201: 2717
12 Li M S , Fu S L , Xu W D , et al . Valence electron structure of Fe2B phase and its eigen-brittleness [J]. Acta Metall. Sin., 1995, 31: 201
李木森, 傅绍丽, 徐万东 等 . Fe2B相价电子结构及其本质脆性 [J]. 金属学报, 1995, 31: 201
13 Hou L L , Yao Y H , Liang X Y , et al . Microstructure and mechanical properties of Al x FeCoNiB0.1 high entropy alloy [J]. Rare Met. Mater. Eng., 2019, 48: 111
侯丽丽, 要玉宏, 梁霄羽 等 . Al x FeCoNiB0.1高熵合金的微观组织和力学性能 [J]. 稀有金属材料与工程, 2019, 48: 111
14 Li M X , Zhao S F , Lu Z , et al . High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
15 Sorescu M , Um C Y , McHenry M E , et al . Thermal behavior of substituted FeCo-based metallic glasses [J]. J. Non-Cryst. Solids, 2005, 351: 663
16 Wang F , Inoue A , Kong F L , et al . Formation, thermal stability and mechanical properties of high entropy (Fe, Co, Ni, Cr, Mo)-B amorphous alloys [J]. J. Alloys Compd., 2018, 732: 637
17 Yuan G Y , Yin J , Ding W J . Structural relaxation and mechanical properties of Mg-Cu-Ni-Gd amorphous alloys [J]. Acta Metall. Sin., 2008, 44: 222
袁广银, 尹 健, 丁文江 . Mg-Cu-Ni-Gd非晶合金结构弛豫及力学性能 [J]. 金属学报, 2008, 44: 222
18 Ning X M , Huang J L , Jia S G , et al . Effect of Al on glass forming ability and thermal stability of Mg-Cu-Y alloys [J]. Chin. J. Nonferrous Met., 2013, 23: 1805
宁向梅, 黄金亮, 贾淑果 等 . Al对Mg-Cu-Y合金非晶形成能力及热稳定性的影响 [J]. 中国有色金属学报, 2013, 23: 1805
19 Lu Y P , Jiang H , Guo S , et al . A new strategy to design eutectic high-entropy alloys using mixing enthalpy [J]. Intermetallics, 2017, 91: 124
20 Qiao J C , Pelletier J M . Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC) [J]. Intermetallics, 2011, 19: 9
21 Luo Q , Guo Y L , Liu B , et al . Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
22 Ge H L , Liu J D , Zheng S J , et al . Boride-induced dislocation channeling in a single crystal Ni-based superalloy [J]. Mater. Lett., 2019, 235: 232
23 Greer A L , Walker I T . Primary crystallization in (Fe, Ni)-based metallic glasses [J]. J. Non-Cryst Solids, 317: 78
24 Singh C V , Warner D H . Mechanisms of Guinier-Preston zone hardening in the athermal limit [J]. Acta Mater., 2010, 58: 5797
25 Matsuda K , Ikeno S , Gamada H , et al . High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass Pct Mg2Si alloy [J]. Metall. Mater. Trans., 1998, 29A: 1161
26 Dubey P A , Schönfeld B , Kostorz G . Shape and internal structure of Guinier-Preston zones in Al-Ag [J]. Acta Metall. Mater., 1991, 39: 1161
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!