Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (7): 1051-1058    DOI: 10.11900/0412.1961.2017.00411
Current Issue | Archive | Adv Search |
Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures
Pengyue ZHAO1,2, Yongbo GUO1(), Qingshun BAI1, Feihu ZHANG1
1 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
2 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures. Acta Metall Sin, 2018, 54(7): 1051-1058.

Download:  HTML  PDF(5128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the present technology, the manufacture of micro-electro-mechanical system (MEMS) and nano-electro-mechanical system (NEMS) are limited by the lack of mechanism of material processing, especially the mechanism of the polycrystalline materials. In this work, based on the microstructures of polycrystalline copper, the evolution mechanism of dislocations on the polycrystalline copper nanoindentation surface is researched by the four types of microstructures in polycrystalline materials, including grain cell, grain boundary, triple junction and vertex points. In addition, the coordination number, internal stress and atomic potential energy of the dislocations defects are also considered. The results show that when the microstructures with high dimension number carry the compressive stress, the adjacent microstructures with low dimension number appear tensile stress and the microstructures with lower dimension number like vertex points is more likely to appear tensile stress. The dislocation atoms accumulate high internal stress and atomic potential energy during the dislocation nucleation. The internal stress of the imperfect dislocation atoms at the dislocation edge is higher than that of the stacking layer atoms inside the dislocations during the dislocation growth. The process of nucleation and growth, and the internal stress accumulation and release both have similar directionality. They both firstly extended to the microstructures with lower dimension number like vertex points and triple junction, and then expend to and stop at the grain boundary with high dimension number.

Key words:  polycrystalline copper      microstructure      nanoindentation      molecular dynamics     
Received:  26 September 2017     
ZTFLH:  TG301  
Fund: Supported by National Science Foundation for Young Scientists of China (No.51405111) and National Natural Science Foundation of China (No.51535003 )

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00411     OR     https://www.ams.org.cn/EN/Y2018/V54/I7/1051

Fig.1  3D model of polycrystalline copper (a), and 3D model of single compressed grain with probe (b) showing nanoindentation molecular dynamics (MD) model
Fig.2  Indentation force-indentation depth curves for polycrystalline copper nanoindentation (Inset shows the nanoindentation force in Y axis with nanoindentation depths from 0 to 0.25 nm)
Fig.3  Top view of single grain with nanoindentation depth of 5 nm (a), and front views of single grain with nanoindentation depths of 1 nm (b), 2 nm (c), 3 nm (d) and 4 nm (e) showing nucleation and propagation of dislocations (CSP—center-symmetry parameter)
Fig.4  Top view of single grain with nanoindentation depth of 5 nm (a), and front views of single grain with nanoindentation depths of 1 nm (b), 2 nm (c), 3 nm (d) and 4 nm (e) showing hydrostatic stress (HY) distributions
Fig.5  Top view of single grain with nanoindentation depth of 5 nm (a), and front views of single grain with nanoindentation depths of 1 nm (b), 2 nm (c), 3 nm (d) and 4 nm (e) showing von Mises stress (VM) distributions
Fig.6  Front views of dislocations with nanoindentation depth of 0.6 nm (a, f, k), 0.8 nm (b, g, l), 1.0 nm (c, h, m), 1.2 nm (d, i, n), 1.4 nm (e, j, o) showing hydrostatic stress (HY) distributions (a~e), von Mises stress (VM) distributions (f~j) and potential energy (PE) distributions (k~o) during dislocation evolution process
Fig.7  Average CSP-indentation depth curves for microstructures in single grain
Fig.8  HY-indentation depth curves for microstructures in single grain
[1] Zhang J J, Sun T, Yan Y D, et al.Molecular dynamics modeling of probe-based nanoscratching on crystalline copper[J]. Chin. Mech. Eng., 2012, 23: 967(张俊杰, 孙涛, 闫永达等. 晶体铜微探针纳米刻划的分子动力学建模[J]. 中国机械工程, 2012, 23: 967)
[2] Jang H, Farkas D.Interaction of lattice dislocations with a grain boundary during nanoindentation simulation[J]. Mater. Lett., 2007, 61: 868
[3] Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Methods[J]. Acta Mater., 2012, 60: 4787
[4] Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Topological properties[J]. Acta Mater., 2013, 61: 2450
[5] Yang B, Zheng B L, Hu X J, et al.Effect of void on nanoindentation process of Ni-based single crystal alloy[J]. Acta Metall. Sin., 2016, 52: 129(杨彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响[J]. 金属学报, 2016, 52: 129)
[6] Zhang K, Weertman J R, Eastman J A.The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper[J]. Appl. Phys. Lett., 2004, 85: 5197
[7] Saraev D, Miller R E.Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings[J]. Acta Mater., 2006, 54: 33
[8] Casals O, O?ená?ek J, Alcalá J.Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals[J]. Acta Mater., 2007, 55: 55
[9] Li Q K, Zhang Y, Chu W Y.Molecular dynamics simulation of plastic deformation during nanoindentation[J]. Acta Metall. Sin., 2004, 40: 1238(李启楷, 张跃, 褚武扬. 纳米压痕形变过程的分子动力学模拟[J]. 金属学报, 2004, 40: 1238)
[10] Wang H L, Wang X X, Wang Y, et al.Atomistic simulation of stress-induced crystallization behavior during the indentation process for amorphous Cu[J]. Acta Metall. Sin., 2007, 43: 259(王海龙, 王秀喜, 王宇等. 压痕过程中非晶Cu形变诱导晶化行为的原子模拟[J]. 金属学报, 2007, 43: 259)
[11] Leng Y S, Yang G P, Hu Y Z, et al.Computer experiments on nano-indentation: A molecular dynamics approach to the elasto-plastic contact of metal copper[J]. J. Mater. Sci., 2000, 35: 2061
[12] Shen B, Sun F H.Molecular dynamics investigation on the atomic-scale indentation and friction behaviors between diamond tips and copper substrate[J]. Diam. Relat. Mater., 2010, 19: 723
[13] Lin Y H, Chen T C.A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation[J]. Appl. Phys., 2008, 92A: 571
[14] Saraev D, Miller R E.Atomistic simulation of nanoindentation into copper multilayers[J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 1089
[15] Szlufarska I.Atomistic simulations of nanoindentation[J]. Mater. Today, 2006, 9(5): 42
[16] Yaghoobi M, Voyiadjis G Z.Effect of boundary conditions on the MD simulation of nanoindentation[J]. Comput. Mater. Sci., 2014, 95: 626
[17] Christopher D, Smith R, Richter A.Atomistic modelling of nanoindentation in iron and silver[J]. Nanotechnology, 2001, 12: 372
[18] Liang H Y, Woo C H, Huang H C, et al.Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation[J]. Comput. Modell. Eng. Sci., 2004, 6: 105
[19] Huang C C, Chiang T C, Fang T H.Grain size effect on indentation of nanocrystalline copper[J]. Appl. Surf. Sci., 2015, 353: 494
[20] Zhu T, Li J, Van Vliet K J, et al. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper[J]. J. Mech. Phys. Solids, 2004, 52: 691
[21] Ma X L, Yang W.Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation[J]. Nanotechnology, 2003, 14: 1208
[22] Carpio P, Rayón E, Paw?owski L, et al.Microstructure and indentation mechanical properties of YSZ nanostructured coatings obtained by suspension plasma spraying[J]. Surf. Coat. Technol., 2013, 220: 237
[23] Guo Y B, Xu T, Li M.Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials[J]. Acta Mater., 2013, 61: 4974
[24] Guo Y B, Xu T, Li M.Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper[J]. Appl. Phys. Lett., 2013, 102: 241910
[25] Guo Y B, Xu T, Li M.Atomistic calculation of internal stress in nanoscale polycrystalline materials[J]. Philos. Mag., 2012, 92: 3064
[26] Liu C L.Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system[J]. Surf. Sci., 1994, 316: 294
[27] Pei Q X, Lu C, Fang F Z, et al.Nanometric cutting of copper: A molecular dynamics study[J]. Comput. Mater. Sci., 2006, 37: 434
[28] Zhang F, Liu Z, Zhou J Q.Molecular dynamics simulation of micro-mechanical deformations in polycrystalline copper with bimodal structures[J]. Mater. Lett., 2016, 183: 261
[29] Goel S, Haque Faisal N, Luo X C, et al.Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation[J]. J. Phys., 2014, 47D: 275304
[30] Sansoz F, Stevenson K D.Relationship between hardness and dislocation processes in a nanocrystalline metal at the atomic scale[J]. Phys. Rev., 2011, 83B: 224101
[31] Tucker G J, Foiles S M.Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel[J]. Mater. Sci. Eng., 2013, A571: 207
[32] Sichani M M, Spearot D E.A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock[J]. Comput. Mater. Sci., 2015, 108: 226
[33] Gao Y, Ruestes C J, Tramontina D R, et al.Comparative simulation study of the structure of the plastic zone produced by nanoindentation[J]. J. Mech. Phys. Solids., 2015, 75: 58
[34] Jiao S S, Tu W J, Zhang P G, et al.Atomistic insights into the prismatic dislocation loop on Al (100) during nanoindentation investigated by molecular dynamics[J]. Comput. Mater. Sci., 2018, 143: 384
[35] Li J, Guo J W, Luo H, et al.Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci., 2016, 364: 190
[36] Yaghoobi M, Voyiadjis G Z.Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation[J]. Comput. Mater. Sci., 2016, 111: 64
[37] Tschopp M A, McDowell D L. Grain boundary dislocation sources in nanocrystalline copper[J]. Scr. Mater., 2008, 58: 299
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!