Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (7): 1051-1058    DOI: 10.11900/0412.1961.2017.00411
Current Issue | Archive | Adv Search |
Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures
Pengyue ZHAO1,2, Yongbo GUO1(), Qingshun BAI1, Feihu ZHANG1
1 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
2 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
Download:  HTML  PDF(5128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the present technology, the manufacture of micro-electro-mechanical system (MEMS) and nano-electro-mechanical system (NEMS) are limited by the lack of mechanism of material processing, especially the mechanism of the polycrystalline materials. In this work, based on the microstructures of polycrystalline copper, the evolution mechanism of dislocations on the polycrystalline copper nanoindentation surface is researched by the four types of microstructures in polycrystalline materials, including grain cell, grain boundary, triple junction and vertex points. In addition, the coordination number, internal stress and atomic potential energy of the dislocations defects are also considered. The results show that when the microstructures with high dimension number carry the compressive stress, the adjacent microstructures with low dimension number appear tensile stress and the microstructures with lower dimension number like vertex points is more likely to appear tensile stress. The dislocation atoms accumulate high internal stress and atomic potential energy during the dislocation nucleation. The internal stress of the imperfect dislocation atoms at the dislocation edge is higher than that of the stacking layer atoms inside the dislocations during the dislocation growth. The process of nucleation and growth, and the internal stress accumulation and release both have similar directionality. They both firstly extended to the microstructures with lower dimension number like vertex points and triple junction, and then expend to and stop at the grain boundary with high dimension number.

Key words:  polycrystalline copper      microstructure      nanoindentation      molecular dynamics     
Received:  26 September 2017     
ZTFLH:  TG301  
Fund: Supported by National Science Foundation for Young Scientists of China (No.51405111) and National Natural Science Foundation of China (No.51535003 )

Cite this article: 

Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures. Acta Metall Sin, 2018, 54(7): 1051-1058.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00411     OR     https://www.ams.org.cn/EN/Y2018/V54/I7/1051

Fig.1  3D model of polycrystalline copper (a), and 3D model of single compressed grain with probe (b) showing nanoindentation molecular dynamics (MD) model
Fig.2  Indentation force-indentation depth curves for polycrystalline copper nanoindentation (Inset shows the nanoindentation force in Y axis with nanoindentation depths from 0 to 0.25 nm)
Fig.3  Top view of single grain with nanoindentation depth of 5 nm (a), and front views of single grain with nanoindentation depths of 1 nm (b), 2 nm (c), 3 nm (d) and 4 nm (e) showing nucleation and propagation of dislocations (CSP—center-symmetry parameter)
Fig.4  Top view of single grain with nanoindentation depth of 5 nm (a), and front views of single grain with nanoindentation depths of 1 nm (b), 2 nm (c), 3 nm (d) and 4 nm (e) showing hydrostatic stress (HY) distributions
Fig.5  Top view of single grain with nanoindentation depth of 5 nm (a), and front views of single grain with nanoindentation depths of 1 nm (b), 2 nm (c), 3 nm (d) and 4 nm (e) showing von Mises stress (VM) distributions
Fig.6  Front views of dislocations with nanoindentation depth of 0.6 nm (a, f, k), 0.8 nm (b, g, l), 1.0 nm (c, h, m), 1.2 nm (d, i, n), 1.4 nm (e, j, o) showing hydrostatic stress (HY) distributions (a~e), von Mises stress (VM) distributions (f~j) and potential energy (PE) distributions (k~o) during dislocation evolution process
Fig.7  Average CSP-indentation depth curves for microstructures in single grain
Fig.8  HY-indentation depth curves for microstructures in single grain
[1] Zhang J J, Sun T, Yan Y D, et al.Molecular dynamics modeling of probe-based nanoscratching on crystalline copper[J]. Chin. Mech. Eng., 2012, 23: 967(张俊杰, 孙涛, 闫永达等. 晶体铜微探针纳米刻划的分子动力学建模[J]. 中国机械工程, 2012, 23: 967)
[2] Jang H, Farkas D.Interaction of lattice dislocations with a grain boundary during nanoindentation simulation[J]. Mater. Lett., 2007, 61: 868
[3] Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Methods[J]. Acta Mater., 2012, 60: 4787
[4] Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Topological properties[J]. Acta Mater., 2013, 61: 2450
[5] Yang B, Zheng B L, Hu X J, et al.Effect of void on nanoindentation process of Ni-based single crystal alloy[J]. Acta Metall. Sin., 2016, 52: 129(杨彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响[J]. 金属学报, 2016, 52: 129)
[6] Zhang K, Weertman J R, Eastman J A.The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper[J]. Appl. Phys. Lett., 2004, 85: 5197
[7] Saraev D, Miller R E.Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings[J]. Acta Mater., 2006, 54: 33
[8] Casals O, O?ená?ek J, Alcalá J.Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals[J]. Acta Mater., 2007, 55: 55
[9] Li Q K, Zhang Y, Chu W Y.Molecular dynamics simulation of plastic deformation during nanoindentation[J]. Acta Metall. Sin., 2004, 40: 1238(李启楷, 张跃, 褚武扬. 纳米压痕形变过程的分子动力学模拟[J]. 金属学报, 2004, 40: 1238)
[10] Wang H L, Wang X X, Wang Y, et al.Atomistic simulation of stress-induced crystallization behavior during the indentation process for amorphous Cu[J]. Acta Metall. Sin., 2007, 43: 259(王海龙, 王秀喜, 王宇等. 压痕过程中非晶Cu形变诱导晶化行为的原子模拟[J]. 金属学报, 2007, 43: 259)
[11] Leng Y S, Yang G P, Hu Y Z, et al.Computer experiments on nano-indentation: A molecular dynamics approach to the elasto-plastic contact of metal copper[J]. J. Mater. Sci., 2000, 35: 2061
[12] Shen B, Sun F H.Molecular dynamics investigation on the atomic-scale indentation and friction behaviors between diamond tips and copper substrate[J]. Diam. Relat. Mater., 2010, 19: 723
[13] Lin Y H, Chen T C.A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation[J]. Appl. Phys., 2008, 92A: 571
[14] Saraev D, Miller R E.Atomistic simulation of nanoindentation into copper multilayers[J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 1089
[15] Szlufarska I.Atomistic simulations of nanoindentation[J]. Mater. Today, 2006, 9(5): 42
[16] Yaghoobi M, Voyiadjis G Z.Effect of boundary conditions on the MD simulation of nanoindentation[J]. Comput. Mater. Sci., 2014, 95: 626
[17] Christopher D, Smith R, Richter A.Atomistic modelling of nanoindentation in iron and silver[J]. Nanotechnology, 2001, 12: 372
[18] Liang H Y, Woo C H, Huang H C, et al.Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation[J]. Comput. Modell. Eng. Sci., 2004, 6: 105
[19] Huang C C, Chiang T C, Fang T H.Grain size effect on indentation of nanocrystalline copper[J]. Appl. Surf. Sci., 2015, 353: 494
[20] Zhu T, Li J, Van Vliet K J, et al. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper[J]. J. Mech. Phys. Solids, 2004, 52: 691
[21] Ma X L, Yang W.Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation[J]. Nanotechnology, 2003, 14: 1208
[22] Carpio P, Rayón E, Paw?owski L, et al.Microstructure and indentation mechanical properties of YSZ nanostructured coatings obtained by suspension plasma spraying[J]. Surf. Coat. Technol., 2013, 220: 237
[23] Guo Y B, Xu T, Li M.Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials[J]. Acta Mater., 2013, 61: 4974
[24] Guo Y B, Xu T, Li M.Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper[J]. Appl. Phys. Lett., 2013, 102: 241910
[25] Guo Y B, Xu T, Li M.Atomistic calculation of internal stress in nanoscale polycrystalline materials[J]. Philos. Mag., 2012, 92: 3064
[26] Liu C L.Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system[J]. Surf. Sci., 1994, 316: 294
[27] Pei Q X, Lu C, Fang F Z, et al.Nanometric cutting of copper: A molecular dynamics study[J]. Comput. Mater. Sci., 2006, 37: 434
[28] Zhang F, Liu Z, Zhou J Q.Molecular dynamics simulation of micro-mechanical deformations in polycrystalline copper with bimodal structures[J]. Mater. Lett., 2016, 183: 261
[29] Goel S, Haque Faisal N, Luo X C, et al.Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation[J]. J. Phys., 2014, 47D: 275304
[30] Sansoz F, Stevenson K D.Relationship between hardness and dislocation processes in a nanocrystalline metal at the atomic scale[J]. Phys. Rev., 2011, 83B: 224101
[31] Tucker G J, Foiles S M.Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel[J]. Mater. Sci. Eng., 2013, A571: 207
[32] Sichani M M, Spearot D E.A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock[J]. Comput. Mater. Sci., 2015, 108: 226
[33] Gao Y, Ruestes C J, Tramontina D R, et al.Comparative simulation study of the structure of the plastic zone produced by nanoindentation[J]. J. Mech. Phys. Solids., 2015, 75: 58
[34] Jiao S S, Tu W J, Zhang P G, et al.Atomistic insights into the prismatic dislocation loop on Al (100) during nanoindentation investigated by molecular dynamics[J]. Comput. Mater. Sci., 2018, 143: 384
[35] Li J, Guo J W, Luo H, et al.Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci., 2016, 364: 190
[36] Yaghoobi M, Voyiadjis G Z.Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation[J]. Comput. Mater. Sci., 2016, 111: 64
[37] Tschopp M A, McDowell D L. Grain boundary dislocation sources in nanocrystalline copper[J]. Scr. Mater., 2008, 58: 299
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[7] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[12] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[13] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[14] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[15] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
No Suggested Reading articles found!