Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1267-1278    DOI: 10.11900/0412.1961.2016.00369
Orginal Article Current Issue | Archive | Adv Search |
THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM
Zhiwei SHAN(),Boyu LIU
Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM. Acta Metall Sin, 2016, 52(10): 1267-1278.

Download:  HTML  PDF(12044KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The {101?2} deformation twinning with extremely low activation stress is considered to be one of main reasons for the low strength of magnesium and its alloys at room temperature. In addition, it was found that those generally adopted age-strengthening methods are less effective for magnesium alloys in which postmortem investigation found that {101?2} deformation twinning is still profuse. The formation and propagation mechanism of {101?2} deformation twinning, which are of great importance for designing high strength magnesium alloy, remains elusive or under fervent debate. This paper reviewed the classical definition of deformation twinning, the existing twinning mechanisms, and the recent achievements through in-situ TEM studies on {101?2} deformation twinning. It was found that the {101?2} deformation twinning observed in magnesium are distinct from the classical definition on twinning. It is indeed a brand new room temperature deformation mechanism that can be carried out through unit-cell-reconstruction, without involving twinning dislocations. In addition, the boundaries generated through unit-cell-reconstruction are composed of {0002}/{101?0} interfaces (BP interfaces) and exhibit a terrace-like morphology in 3D space. The unit-cell-reconstruction is essentially different from the traditional dislocation-based twinning mechanism. As a consequence, to develop an effective strengthening strategy based on the nature of this new deformation mechanism would be the key for designing high strength magnesium alloy.

Key words:  Mg      deformation twinning      basal/prismatic interface      strength      alloy design     
Received:  16 August 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (Nos.51231005 and 51321003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00369     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1267

Fig.1  Twinning elements of 111 twin in fcc structure[38] (K1 is the first undistorted (invariant) plane, K2 is the second undistorted (conjugate) plane, η1 is the shear direction, η2 and η2 are the conjugate shear directions in matrix and twin, respectively. °and ? represent alternative (11?0) planes. A, B and C represent the stacking sequence of (111) planes. a refers to the lattice constant. Dashed lines towards lower right are traces of (111) planes)
Fig.2  SEM images of micro-pillar (a) and ‘dog-bone’ sample (b) of pure magnesium[69]
Fig.3  Measured angle between the {1012?} twin boundary and the loading direction[69] (a and b point to the twin boundary that is approximately parallel to and perpendicular to the loading direction, respectively. c points to the twin boundary generally following the twinning plane)
Fig.4  {101?2} twin boundary is almost parallel (a) or perpendicular (b) to the loading direction[68,69]
Fig.5  The projection of an inclined {101?2} twin boundary [69] (w—width of projection, t—thickness of sample)
(a) dark field TEM image showing a band-like twin boundary
(b) schematic illustrates that the band-like feature comes from the projection of a inclined twin boundary along the e-beam direction
Fig.6  Snapshots from an in-situ video showing the {101?2} twin boundary migration viewed along [0001] [69]
(a) the twin (dark contrast) just formed (b) the twin is expanding with an arch shaped boundary (c) the pillar was under the largest strain (d) the diamond punch was completely retracted
Fig.7  HRTEM images of {101?2} twin boundaries[70] (white dashed lines outline the profile of twin boundary)
(a) twin boundary is approximately parallel to the {101?2} plane (1 points to a step parallel to the basal plane in twin)
(b) twin boundary is approximately perpendicular to the basal plane of the matrix (1 points to a step parallel to the basal plane in matrix. 2 points to a stacking fault in matrix)
(c) twin boundary with zig-zag shape (1 and 3 point to segments of the twin boundary parallel to basal plane in twin. 2 point to a segment approximately along the {101?2} plane. 4 points to a band-like boundary area with its width of about 2 nm)
(d, e) serrated twin boundaries exhibit considerable width of about 5~10 nm
(f) a band-like twin boundary with its width of about 15 nm
Fig.8  Atomic scale images of BP interfaces (a, c, e) and the corresponding schematics (b, d, f) [39]
(a, b) the coexistence of CTB and BP interfaces
(c, d) the coexistence of BP and PB interfaces
(e, f) a long BP inteface with several steps
Fig.9  One possible route for the unit-cell-reconstruction[68,70] (The matrix hcp cell and its atoms are outlined by dashed lines and circles (light gray) respectively. The new hcp cell and the atoms are outlined by solid lines and circles (dark gray) respectively)
[1] Yu Q, Zhang J X, Jiang Y Y.Philos Mag Lett, 2011; 91: 757
[2] Barnett M R.Mater Sci Eng, 2007; A464: 1
[3] Wonsiewicz B C, Backofen W A.Trans Metall Soc AIME, 1967; 239: 9
[4] Kelley E W, Hosford W F.Trans Metall Soc AIME, 1968; 242: 5
[5] Yin D L, Wang J T, Liu J Q, Zhao X.J Alloys Compd, 2009; 478: 789
[6] Barnett M R, Davies C H J, Ma X.Scr Mater, 2005; 52: 627
[7] Ball E A, Prangnell P B.Scr Metall, 1994; 31: 111
[8] Yu Q, Wang J, Jiang Y Y, McCabe R J, Li N, Tome C N.Acta Mater, 2014; 77: 28
[9] Price P B.Proc R Soc Lon, 1961; 260A: 251
[10] Li B, Ma Q, McClelland Z, Horstemeyer S J, Whittington W R, Brauer S, Allison P G.Scr Mater, 2013; 69: 493
[11] Yu Q, Jiang Y, Wang J.Scr Mater, 2015; 96: 41
[12] Nie J F, Zhu Y M, Liu J Z, Fang X Y.Science, 2013; 340: 957
[13] Mahajan S, Chin G Y.Acta Metall, 1973; 21: 1353
[14] Christian J W, Mahajan S.Prog Mater Sci, 1995; 39: 1
[15] Raeisinia B, Agnew S R, Akhtar A.Metall Mater Trans, 2011; 42A: 1418
[16] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1339
[17] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1351
[18] Nie J F.Scr Mater, 2003; 48: 1009
[19] Liao M, Li B, Horstemeyer M F.Comput Mater Sci, 2013; 79: 534
[20] Nie J F.Metall Mater Trans, 2012; 43A: 3891
[21] Hong S G, Park S H, Lee C S.J Mater Res, 2010; 25: 784
[22] Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H.Int J Plast, 2007; 23: 44
[23] Xiong Y, Yu Q, Jiang Y.Mater Sci Eng, 2012; A546: 119
[24] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C.Mater Sci Eng, 2010; A527: 2915
[25] Proust G, Tome C N, Jain A, Agnew S R.Int J Plast, 2009; 25: 861
[26] Chino Y, Kimura K, Mabuchi M.Mater Sci Eng, 2008; A486: 481
[27] Wang Y N, Huang J C.Acta Mater, 2007; 55: 897
[28] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R.Acta Mater, 2010; 58: 6230
[29] Kleiner S, Uggowitzer P J.Mater Sci Eng, 2004; A379: 258
[30] Robson J D, Stanford N, Barnett M R.Acta Mater, 2011; 59: 1945
[31] Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226
[32] Partridge P G, Roberts E.Acta Metall, 1964; 12: 1205
[33] Clark J B.Acta Metall, 1965; 13: 1281
[34] Clark J B.Acta Metall, 1968; 16: 141
[35] Gharghouri M A, Weatherly G C, Embury J D.Philos Mag, 1998; 78A: 1137
[36] Bilby B A, Crocker A G.Proc R Soc Lon, 1965; 288A: 240
[37] Cahn R W.Adv Phys, 1954; 3: 363
[38] Yu Y N.The Principle of Physical Metallurgy. 2nd Ed., Beijing: Metallurgica Industry Press, 2013: 763
[38] (余永宁. 金属学原理. 第2版, 北京: 冶金工业出版社, 2013: 763)
[39] Liu B Y.PhD Dissertation, Xi'an Jiaotong University, 2015
[39] (刘博宇, 西安交通大学博士学位论文, 2015)
[40] Li B, Zhang X Y.Scr Mater, 2016; 125: 73
[41] Thompson N, Millard D J.Philos Mag, 1952; 43: 422
[42] Capolungo L, Beyerlein I J.Phys Rev, 2008; 78B: 2
[43] Serra A, Bacon D J, Pond R C.Acta Mater, 1999; 47: 1425
[44] Pond R C, Serra A, Bacon D J.Acta Mater, 1999; 47: 1441
[45] Serra A, Bacon D J.Philos Mag, 1996; 73A: 333
[46] Pond R C, Bacon D J, Serra A, Sutton A P.Metall Trans, 1991; 22A: 1185
[47] Serra A, Bacon D J, Pond R C.Acta Metall, 1988; 36: 3183
[48] Serra A, Bacon D J.Philos Mag, 1986; 54A: 793
[49] Braisaz T, Ruterana P, Nouet G, Pond R C.Philos Mag, 1997; 75A: 1075
[50] Wang J, Hoagland R G, Hirth J P, Capolungo L, Beyerlein I J, Tome C N.Scr Mater, 2009; 61: 903
[51] Wang J, Hirth J P, Tome C N.Acta Mater, 2009; 57: 5521
[52] Li B, Ma E.Phys Rev Lett, 2009; 103: 035503
[53] Serra A, Bacon D J, Pond R C.Phys Rev Lett, 2010; 104: 029603
[54] Li B, Ma E.Phys Rev Lett, 2010; 104: 029604
[55] Pond R C, Hirth J P, Serra A, Bacon D J.Mater Res Lett, 2016; 4: 185
[56] Hirth J P, Wang J, Tomé C N.Prog Mater Sci, 2016; 83: 417
[57] Ishii A, Li J, Ogata S.Int J Plast, 2016; 82: 32
[58] Zong H, Ding X, Lookman T, Li J, Sun J.Acta Mater, 2015; 82: 295
[59] Yuasa M, Hayashi M, Mabuchi M, Chino Y.J Phys: Condens Matter, 2014; 26: 015003
[60] Li B, Zhang X Y.Scr Mater, 2014; 71: 45
[61] Li B, McClelland Z, Horstemeyer S J, Aslam I, Wang P T, Horstemeyer M F.Mater Des, 2014; 66(Part B): 575
[62] Barrett C D, El Kadiri H.Acta Mater, 2014; 63: 1
[63] Xu B, Capolungo L, Rodney D.Scr Mater, 2013; 68: 901
[64] Wang J, Yadav S K, Hirth J P, Tomé C N, Beyerlein I J.Mater Res Lett, 2013; 1: 126
[65] Wang J, Liu L, Tomé C N, Mao S X, Gong S K.Mater Res Lett, 2013; 1: 81
[66] Shan Z W.JOM, 2012; 64: 1229
[67] Liu B Y, Li B, Shan Z W.In: Hort N, Mathaudhu S N, Neelameggham N R, Alderman M eds., Magnesium Technology 2013, San Diego: John Wiley & Sons, Inc., 2013: 107
[68] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J, Ma E.Nat Commun, 2014; 5: 3297
[69] Liu B Y, Wan L, Wang J, Ma E, Shan Z W.Scr Mater, 2015; 100:86
[70] Liu B Y, Shan Z-W, Ma E.In: Singh A, Solanki K, Manuel M V, Neelameggham N R eds., Magnesium Technology 2016, Nashville: John Wiley & Sons, Inc., 2016: 199
[71] Zhang X Y, Li B, Wu X L, Zhu Y T, Ma Q, Liu Q, Wang P T, Horstemeyer M F.Scr Mater, 2012; 67: 862
[72] Tu J, Zhang X Y, Wang J, Sun Q, Liu Q, Tomé C N.Appl Phys Lett, 2013; 103: 051903
[73] Sun Q, Zhang X Y, Ren Y, Tu J, Liu Q. Scr Mater, 2014; 90-91: 41
[74] Uchic M D, Dimiduk D M, Florando J N, Nix W D.Science, 2004; 305: 986
[75] Yu Q, Shan Z-W, Li J, Huang X, Xiao L, Sun J, Ma E.Nature, 2010; 463: 335
[76] Jian W W, Cheng G M, Xu W Z, Yuan H, Tsai M H, Wang Q D, Koch C C, Zhu Y T, Mathaudhu S N.Mater Res Lett, 2013; 1: 61
[77] Li B, Yan P F, Sui M L, Ma E.Acta Mater, 2010; 58: 173
[78] Bere A, Chen J, Hairie A, Nouet G, Paumier E.Phys Status Solidi, 2004; 241B: 2482
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[8] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[9] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[10] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[11] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[14] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[15] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
No Suggested Reading articles found!