Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1267-1278    DOI: 10.11900/0412.1961.2016.00369
Orginal Article Current Issue | Archive | Adv Search |
Zhiwei SHAN(),Boyu LIU
Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Download:  HTML  PDF(12044KB) 
Export:  BibTeX | EndNote (RIS)      

The {101?2} deformation twinning with extremely low activation stress is considered to be one of main reasons for the low strength of magnesium and its alloys at room temperature. In addition, it was found that those generally adopted age-strengthening methods are less effective for magnesium alloys in which postmortem investigation found that {101?2} deformation twinning is still profuse. The formation and propagation mechanism of {101?2} deformation twinning, which are of great importance for designing high strength magnesium alloy, remains elusive or under fervent debate. This paper reviewed the classical definition of deformation twinning, the existing twinning mechanisms, and the recent achievements through in-situ TEM studies on {101?2} deformation twinning. It was found that the {101?2} deformation twinning observed in magnesium are distinct from the classical definition on twinning. It is indeed a brand new room temperature deformation mechanism that can be carried out through unit-cell-reconstruction, without involving twinning dislocations. In addition, the boundaries generated through unit-cell-reconstruction are composed of {0002}/{101?0} interfaces (BP interfaces) and exhibit a terrace-like morphology in 3D space. The unit-cell-reconstruction is essentially different from the traditional dislocation-based twinning mechanism. As a consequence, to develop an effective strengthening strategy based on the nature of this new deformation mechanism would be the key for designing high strength magnesium alloy.

Key words:  Mg      deformation twinning      basal/prismatic interface      strength      alloy design     
Received:  16 August 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51231005 and 51321003)

Cite this article: 

Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM. Acta Metall Sin, 2016, 52(10): 1267-1278.

URL:     OR

Fig.1  Twinning elements of 111 twin in fcc structure[38] (K1 is the first undistorted (invariant) plane, K2 is the second undistorted (conjugate) plane, η1 is the shear direction, η2 and η2 are the conjugate shear directions in matrix and twin, respectively. °and ? represent alternative (11?0) planes. A, B and C represent the stacking sequence of (111) planes. a refers to the lattice constant. Dashed lines towards lower right are traces of (111) planes)
Fig.2  SEM images of micro-pillar (a) and ‘dog-bone’ sample (b) of pure magnesium[69]
Fig.3  Measured angle between the {1012?} twin boundary and the loading direction[69] (a and b point to the twin boundary that is approximately parallel to and perpendicular to the loading direction, respectively. c points to the twin boundary generally following the twinning plane)
Fig.4  {101?2} twin boundary is almost parallel (a) or perpendicular (b) to the loading direction[68,69]
Fig.5  The projection of an inclined {101?2} twin boundary [69] (w—width of projection, t—thickness of sample)
(a) dark field TEM image showing a band-like twin boundary
(b) schematic illustrates that the band-like feature comes from the projection of a inclined twin boundary along the e-beam direction
Fig.6  Snapshots from an in-situ video showing the {101?2} twin boundary migration viewed along [0001] [69]
(a) the twin (dark contrast) just formed (b) the twin is expanding with an arch shaped boundary (c) the pillar was under the largest strain (d) the diamond punch was completely retracted
Fig.7  HRTEM images of {101?2} twin boundaries[70] (white dashed lines outline the profile of twin boundary)
(a) twin boundary is approximately parallel to the {101?2} plane (1 points to a step parallel to the basal plane in twin)
(b) twin boundary is approximately perpendicular to the basal plane of the matrix (1 points to a step parallel to the basal plane in matrix. 2 points to a stacking fault in matrix)
(c) twin boundary with zig-zag shape (1 and 3 point to segments of the twin boundary parallel to basal plane in twin. 2 point to a segment approximately along the {101?2} plane. 4 points to a band-like boundary area with its width of about 2 nm)
(d, e) serrated twin boundaries exhibit considerable width of about 5~10 nm
(f) a band-like twin boundary with its width of about 15 nm
Fig.8  Atomic scale images of BP interfaces (a, c, e) and the corresponding schematics (b, d, f) [39]
(a, b) the coexistence of CTB and BP interfaces
(c, d) the coexistence of BP and PB interfaces
(e, f) a long BP inteface with several steps
Fig.9  One possible route for the unit-cell-reconstruction[68,70] (The matrix hcp cell and its atoms are outlined by dashed lines and circles (light gray) respectively. The new hcp cell and the atoms are outlined by solid lines and circles (dark gray) respectively)
[1] Yu Q, Zhang J X, Jiang Y Y.Philos Mag Lett, 2011; 91: 757
[2] Barnett M R.Mater Sci Eng, 2007; A464: 1
[3] Wonsiewicz B C, Backofen W A.Trans Metall Soc AIME, 1967; 239: 9
[4] Kelley E W, Hosford W F.Trans Metall Soc AIME, 1968; 242: 5
[5] Yin D L, Wang J T, Liu J Q, Zhao X.J Alloys Compd, 2009; 478: 789
[6] Barnett M R, Davies C H J, Ma X.Scr Mater, 2005; 52: 627
[7] Ball E A, Prangnell P B.Scr Metall, 1994; 31: 111
[8] Yu Q, Wang J, Jiang Y Y, McCabe R J, Li N, Tome C N.Acta Mater, 2014; 77: 28
[9] Price P B.Proc R Soc Lon, 1961; 260A: 251
[10] Li B, Ma Q, McClelland Z, Horstemeyer S J, Whittington W R, Brauer S, Allison P G.Scr Mater, 2013; 69: 493
[11] Yu Q, Jiang Y, Wang J.Scr Mater, 2015; 96: 41
[12] Nie J F, Zhu Y M, Liu J Z, Fang X Y.Science, 2013; 340: 957
[13] Mahajan S, Chin G Y.Acta Metall, 1973; 21: 1353
[14] Christian J W, Mahajan S.Prog Mater Sci, 1995; 39: 1
[15] Raeisinia B, Agnew S R, Akhtar A.Metall Mater Trans, 2011; 42A: 1418
[16] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1339
[17] Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1351
[18] Nie J F.Scr Mater, 2003; 48: 1009
[19] Liao M, Li B, Horstemeyer M F.Comput Mater Sci, 2013; 79: 534
[20] Nie J F.Metall Mater Trans, 2012; 43A: 3891
[21] Hong S G, Park S H, Lee C S.J Mater Res, 2010; 25: 784
[22] Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H.Int J Plast, 2007; 23: 44
[23] Xiong Y, Yu Q, Jiang Y.Mater Sci Eng, 2012; A546: 119
[24] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C.Mater Sci Eng, 2010; A527: 2915
[25] Proust G, Tome C N, Jain A, Agnew S R.Int J Plast, 2009; 25: 861
[26] Chino Y, Kimura K, Mabuchi M.Mater Sci Eng, 2008; A486: 481
[27] Wang Y N, Huang J C.Acta Mater, 2007; 55: 897
[28] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R.Acta Mater, 2010; 58: 6230
[29] Kleiner S, Uggowitzer P J.Mater Sci Eng, 2004; A379: 258
[30] Robson J D, Stanford N, Barnett M R.Acta Mater, 2011; 59: 1945
[31] Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226
[32] Partridge P G, Roberts E.Acta Metall, 1964; 12: 1205
[33] Clark J B.Acta Metall, 1965; 13: 1281
[34] Clark J B.Acta Metall, 1968; 16: 141
[35] Gharghouri M A, Weatherly G C, Embury J D.Philos Mag, 1998; 78A: 1137
[36] Bilby B A, Crocker A G.Proc R Soc Lon, 1965; 288A: 240
[37] Cahn R W.Adv Phys, 1954; 3: 363
[38] Yu Y N.The Principle of Physical Metallurgy. 2nd Ed., Beijing: Metallurgica Industry Press, 2013: 763
[38] (余永宁. 金属学原理. 第2版, 北京: 冶金工业出版社, 2013: 763)
[39] Liu B Y.PhD Dissertation, Xi'an Jiaotong University, 2015
[39] (刘博宇, 西安交通大学博士学位论文, 2015)
[40] Li B, Zhang X Y.Scr Mater, 2016; 125: 73
[41] Thompson N, Millard D J.Philos Mag, 1952; 43: 422
[42] Capolungo L, Beyerlein I J.Phys Rev, 2008; 78B: 2
[43] Serra A, Bacon D J, Pond R C.Acta Mater, 1999; 47: 1425
[44] Pond R C, Serra A, Bacon D J.Acta Mater, 1999; 47: 1441
[45] Serra A, Bacon D J.Philos Mag, 1996; 73A: 333
[46] Pond R C, Bacon D J, Serra A, Sutton A P.Metall Trans, 1991; 22A: 1185
[47] Serra A, Bacon D J, Pond R C.Acta Metall, 1988; 36: 3183
[48] Serra A, Bacon D J.Philos Mag, 1986; 54A: 793
[49] Braisaz T, Ruterana P, Nouet G, Pond R C.Philos Mag, 1997; 75A: 1075
[50] Wang J, Hoagland R G, Hirth J P, Capolungo L, Beyerlein I J, Tome C N.Scr Mater, 2009; 61: 903
[51] Wang J, Hirth J P, Tome C N.Acta Mater, 2009; 57: 5521
[52] Li B, Ma E.Phys Rev Lett, 2009; 103: 035503
[53] Serra A, Bacon D J, Pond R C.Phys Rev Lett, 2010; 104: 029603
[54] Li B, Ma E.Phys Rev Lett, 2010; 104: 029604
[55] Pond R C, Hirth J P, Serra A, Bacon D J.Mater Res Lett, 2016; 4: 185
[56] Hirth J P, Wang J, Tomé C N.Prog Mater Sci, 2016; 83: 417
[57] Ishii A, Li J, Ogata S.Int J Plast, 2016; 82: 32
[58] Zong H, Ding X, Lookman T, Li J, Sun J.Acta Mater, 2015; 82: 295
[59] Yuasa M, Hayashi M, Mabuchi M, Chino Y.J Phys: Condens Matter, 2014; 26: 015003
[60] Li B, Zhang X Y.Scr Mater, 2014; 71: 45
[61] Li B, McClelland Z, Horstemeyer S J, Aslam I, Wang P T, Horstemeyer M F.Mater Des, 2014; 66(Part B): 575
[62] Barrett C D, El Kadiri H.Acta Mater, 2014; 63: 1
[63] Xu B, Capolungo L, Rodney D.Scr Mater, 2013; 68: 901
[64] Wang J, Yadav S K, Hirth J P, Tomé C N, Beyerlein I J.Mater Res Lett, 2013; 1: 126
[65] Wang J, Liu L, Tomé C N, Mao S X, Gong S K.Mater Res Lett, 2013; 1: 81
[66] Shan Z W.JOM, 2012; 64: 1229
[67] Liu B Y, Li B, Shan Z W.In: Hort N, Mathaudhu S N, Neelameggham N R, Alderman M eds., Magnesium Technology 2013, San Diego: John Wiley & Sons, Inc., 2013: 107
[68] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J, Ma E.Nat Commun, 2014; 5: 3297
[69] Liu B Y, Wan L, Wang J, Ma E, Shan Z W.Scr Mater, 2015; 100:86
[70] Liu B Y, Shan Z-W, Ma E.In: Singh A, Solanki K, Manuel M V, Neelameggham N R eds., Magnesium Technology 2016, Nashville: John Wiley & Sons, Inc., 2016: 199
[71] Zhang X Y, Li B, Wu X L, Zhu Y T, Ma Q, Liu Q, Wang P T, Horstemeyer M F.Scr Mater, 2012; 67: 862
[72] Tu J, Zhang X Y, Wang J, Sun Q, Liu Q, Tomé C N.Appl Phys Lett, 2013; 103: 051903
[73] Sun Q, Zhang X Y, Ren Y, Tu J, Liu Q. Scr Mater, 2014; 90-91: 41
[74] Uchic M D, Dimiduk D M, Florando J N, Nix W D.Science, 2004; 305: 986
[75] Yu Q, Shan Z-W, Li J, Huang X, Xiao L, Sun J, Ma E.Nature, 2010; 463: 335
[76] Jian W W, Cheng G M, Xu W Z, Yuan H, Tsai M H, Wang Q D, Koch C C, Zhu Y T, Mathaudhu S N.Mater Res Lett, 2013; 1: 61
[77] Li B, Yan P F, Sui M L, Ma E.Acta Mater, 2010; 58: 173
[78] Bere A, Chen J, Hairie A, Nouet G, Paumier E.Phys Status Solidi, 2004; 241B: 2482
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[4] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[5] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[6] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[7] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[8] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[9] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] SUN Heng,LIN Xiaoping,ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun. Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. 金属学报, 2020, 56(3): 340-350.
[12] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[13] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[14] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[15] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
No Suggested Reading articles found!