|
|
THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM |
Zhiwei SHAN( ),Boyu LIU |
Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM. Acta Metall Sin, 2016, 52(10): 1267-1278.
|
|
Abstract The {101?2} deformation twinning with extremely low activation stress is considered to be one of main reasons for the low strength of magnesium and its alloys at room temperature. In addition, it was found that those generally adopted age-strengthening methods are less effective for magnesium alloys in which postmortem investigation found that {101?2} deformation twinning is still profuse. The formation and propagation mechanism of {101?2} deformation twinning, which are of great importance for designing high strength magnesium alloy, remains elusive or under fervent debate. This paper reviewed the classical definition of deformation twinning, the existing twinning mechanisms, and the recent achievements through in-situ TEM studies on {101?2} deformation twinning. It was found that the {101?2} deformation twinning observed in magnesium are distinct from the classical definition on twinning. It is indeed a brand new room temperature deformation mechanism that can be carried out through unit-cell-reconstruction, without involving twinning dislocations. In addition, the boundaries generated through unit-cell-reconstruction are composed of {0002}/{101?0} interfaces (BP interfaces) and exhibit a terrace-like morphology in 3D space. The unit-cell-reconstruction is essentially different from the traditional dislocation-based twinning mechanism. As a consequence, to develop an effective strengthening strategy based on the nature of this new deformation mechanism would be the key for designing high strength magnesium alloy.
|
Received: 16 August 2016
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51231005 and 51321003) |
[1] | Yu Q, Zhang J X, Jiang Y Y.Philos Mag Lett, 2011; 91: 757 | [2] | Barnett M R.Mater Sci Eng, 2007; A464: 1 | [3] | Wonsiewicz B C, Backofen W A.Trans Metall Soc AIME, 1967; 239: 9 | [4] | Kelley E W, Hosford W F.Trans Metall Soc AIME, 1968; 242: 5 | [5] | Yin D L, Wang J T, Liu J Q, Zhao X.J Alloys Compd, 2009; 478: 789 | [6] | Barnett M R, Davies C H J, Ma X.Scr Mater, 2005; 52: 627 | [7] | Ball E A, Prangnell P B.Scr Metall, 1994; 31: 111 | [8] | Yu Q, Wang J, Jiang Y Y, McCabe R J, Li N, Tome C N.Acta Mater, 2014; 77: 28 | [9] | Price P B.Proc R Soc Lon, 1961; 260A: 251 | [10] | Li B, Ma Q, McClelland Z, Horstemeyer S J, Whittington W R, Brauer S, Allison P G.Scr Mater, 2013; 69: 493 | [11] | Yu Q, Jiang Y, Wang J.Scr Mater, 2015; 96: 41 | [12] | Nie J F, Zhu Y M, Liu J Z, Fang X Y.Science, 2013; 340: 957 | [13] | Mahajan S, Chin G Y.Acta Metall, 1973; 21: 1353 | [14] | Christian J W, Mahajan S.Prog Mater Sci, 1995; 39: 1 | [15] | Raeisinia B, Agnew S R, Akhtar A.Metall Mater Trans, 2011; 42A: 1418 | [16] | Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1339 | [17] | Akhtar A, Teghtsoonian E.Acta Metall, 1969; 17: 1351 | [18] | Nie J F.Scr Mater, 2003; 48: 1009 | [19] | Liao M, Li B, Horstemeyer M F.Comput Mater Sci, 2013; 79: 534 | [20] | Nie J F.Metall Mater Trans, 2012; 43A: 3891 | [21] | Hong S G, Park S H, Lee C S.J Mater Res, 2010; 25: 784 | [22] | Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H.Int J Plast, 2007; 23: 44 | [23] | Xiong Y, Yu Q, Jiang Y.Mater Sci Eng, 2012; A546: 119 | [24] | Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C.Mater Sci Eng, 2010; A527: 2915 | [25] | Proust G, Tome C N, Jain A, Agnew S R.Int J Plast, 2009; 25: 861 | [26] | Chino Y, Kimura K, Mabuchi M.Mater Sci Eng, 2008; A486: 481 | [27] | Wang Y N, Huang J C.Acta Mater, 2007; 55: 897 | [28] | Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R.Acta Mater, 2010; 58: 6230 | [29] | Kleiner S, Uggowitzer P J.Mater Sci Eng, 2004; A379: 258 | [30] | Robson J D, Stanford N, Barnett M R.Acta Mater, 2011; 59: 1945 | [31] | Stanford N, Barnett M R.Mater Sci Eng, 2009; A516: 226 | [32] | Partridge P G, Roberts E.Acta Metall, 1964; 12: 1205 | [33] | Clark J B.Acta Metall, 1965; 13: 1281 | [34] | Clark J B.Acta Metall, 1968; 16: 141 | [35] | Gharghouri M A, Weatherly G C, Embury J D.Philos Mag, 1998; 78A: 1137 | [36] | Bilby B A, Crocker A G.Proc R Soc Lon, 1965; 288A: 240 | [37] | Cahn R W.Adv Phys, 1954; 3: 363 | [38] | Yu Y N.The Principle of Physical Metallurgy. 2nd Ed., Beijing: Metallurgica Industry Press, 2013: 763 | [38] | (余永宁. 金属学原理. 第2版, 北京: 冶金工业出版社, 2013: 763) | [39] | Liu B Y.PhD Dissertation, Xi'an Jiaotong University, 2015 | [39] | (刘博宇, 西安交通大学博士学位论文, 2015) | [40] | Li B, Zhang X Y.Scr Mater, 2016; 125: 73 | [41] | Thompson N, Millard D J.Philos Mag, 1952; 43: 422 | [42] | Capolungo L, Beyerlein I J.Phys Rev, 2008; 78B: 2 | [43] | Serra A, Bacon D J, Pond R C.Acta Mater, 1999; 47: 1425 | [44] | Pond R C, Serra A, Bacon D J.Acta Mater, 1999; 47: 1441 | [45] | Serra A, Bacon D J.Philos Mag, 1996; 73A: 333 | [46] | Pond R C, Bacon D J, Serra A, Sutton A P.Metall Trans, 1991; 22A: 1185 | [47] | Serra A, Bacon D J, Pond R C.Acta Metall, 1988; 36: 3183 | [48] | Serra A, Bacon D J.Philos Mag, 1986; 54A: 793 | [49] | Braisaz T, Ruterana P, Nouet G, Pond R C.Philos Mag, 1997; 75A: 1075 | [50] | Wang J, Hoagland R G, Hirth J P, Capolungo L, Beyerlein I J, Tome C N.Scr Mater, 2009; 61: 903 | [51] | Wang J, Hirth J P, Tome C N.Acta Mater, 2009; 57: 5521 | [52] | Li B, Ma E.Phys Rev Lett, 2009; 103: 035503 | [53] | Serra A, Bacon D J, Pond R C.Phys Rev Lett, 2010; 104: 029603 | [54] | Li B, Ma E.Phys Rev Lett, 2010; 104: 029604 | [55] | Pond R C, Hirth J P, Serra A, Bacon D J.Mater Res Lett, 2016; 4: 185 | [56] | Hirth J P, Wang J, Tomé C N.Prog Mater Sci, 2016; 83: 417 | [57] | Ishii A, Li J, Ogata S.Int J Plast, 2016; 82: 32 | [58] | Zong H, Ding X, Lookman T, Li J, Sun J.Acta Mater, 2015; 82: 295 | [59] | Yuasa M, Hayashi M, Mabuchi M, Chino Y.J Phys: Condens Matter, 2014; 26: 015003 | [60] | Li B, Zhang X Y.Scr Mater, 2014; 71: 45 | [61] | Li B, McClelland Z, Horstemeyer S J, Aslam I, Wang P T, Horstemeyer M F.Mater Des, 2014; 66(Part B): 575 | [62] | Barrett C D, El Kadiri H.Acta Mater, 2014; 63: 1 | [63] | Xu B, Capolungo L, Rodney D.Scr Mater, 2013; 68: 901 | [64] | Wang J, Yadav S K, Hirth J P, Tomé C N, Beyerlein I J.Mater Res Lett, 2013; 1: 126 | [65] | Wang J, Liu L, Tomé C N, Mao S X, Gong S K.Mater Res Lett, 2013; 1: 81 | [66] | Shan Z W.JOM, 2012; 64: 1229 | [67] | Liu B Y, Li B, Shan Z W.In: Hort N, Mathaudhu S N, Neelameggham N R, Alderman M eds., Magnesium Technology 2013, San Diego: John Wiley & Sons, Inc., 2013: 107 | [68] | Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J, Ma E.Nat Commun, 2014; 5: 3297 | [69] | Liu B Y, Wan L, Wang J, Ma E, Shan Z W.Scr Mater, 2015; 100:86 | [70] | Liu B Y, Shan Z-W, Ma E.In: Singh A, Solanki K, Manuel M V, Neelameggham N R eds., Magnesium Technology 2016, Nashville: John Wiley & Sons, Inc., 2016: 199 | [71] | Zhang X Y, Li B, Wu X L, Zhu Y T, Ma Q, Liu Q, Wang P T, Horstemeyer M F.Scr Mater, 2012; 67: 862 | [72] | Tu J, Zhang X Y, Wang J, Sun Q, Liu Q, Tomé C N.Appl Phys Lett, 2013; 103: 051903 | [73] | Sun Q, Zhang X Y, Ren Y, Tu J, Liu Q. Scr Mater, 2014; 90-91: 41 | [74] | Uchic M D, Dimiduk D M, Florando J N, Nix W D.Science, 2004; 305: 986 | [75] | Yu Q, Shan Z-W, Li J, Huang X, Xiao L, Sun J, Ma E.Nature, 2010; 463: 335 | [76] | Jian W W, Cheng G M, Xu W Z, Yuan H, Tsai M H, Wang Q D, Koch C C, Zhu Y T, Mathaudhu S N.Mater Res Lett, 2013; 1: 61 | [77] | Li B, Yan P F, Sui M L, Ma E.Acta Mater, 2010; 58: 173 | [78] | Bere A, Chen J, Hairie A, Nouet G, Paumier E.Phys Status Solidi, 2004; 241B: 2482 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|