Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1259-1266    DOI: 10.11900/0412.1961.2016.00290
Orginal Article Current Issue | Archive | Adv Search |
RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY
Yongchang LIU(),Qianying GUO,Chong LI,Yunpeng MEI,Xiaosheng ZHOU,Yuan HUANG,Huijun LI
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China
Cite this article: 

Yongchang LIU, Qianying GUO, Chong LI, Yunpeng MEI, Xiaosheng ZHOU, Yuan HUANG, Huijun LI. RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY. Acta Metall Sin, 2016, 52(10): 1259-1266.

Download:  HTML  PDF(1049KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For the manufacture of complicated metallic structural components in power plants, aerospace and defense industry, Inconel 718 superalloy has been widely employed. High-temperature fatigue resistance and creep rupture strength of Inconel 718 superalloy are susceptible to the microstructure evolution in manufacture processing. Previous research work is generally focused on the parameter optimization of hot working processes (directional solidification, heat treatment, forging and welding). Relationships between the cold deformation, hot working, welding and the high-temperature mechanical performance, are seldom discussed, especially in the light of precipitate control . In this work, various types of secondary phases in Inconel 718 alloy are reviewed, including the primary strengthening phase (γ'' phase), secondary strengthening phase (γ' phase), equilibrium phase of γ'' phase (δ phase), MX-type carbonitride and Laves phase. Precipitation mechanisms of secondary phases in Inconel 718 alloy are also reviewed, as well as the effects of different types of precipitates on high-temperature performance of the Inconel 718 alloy. With respect to the high-energy electron beam welding of Inconel 718 alloys, factors contributing to the cracking in heat affected zone are indicated.

Key words:  Inconel 718 superalloy      precipitate      deformation      electron beam welding      creep property Inconel     
Received:  07 July 2016     
ZTFLH:     
Fund: Supported by National High Technology Research and Development Program of China (No.2015-AA042504), National Natural Science Foundation of China (No.51474156) and China National Funds for Distinguished Young Scientists (No.51325401)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00290     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1259

Phase Formula Crystal structure Lattice constant / nm
γ - fcc (A1) a=0.3616
γ Ni3(Ai, Ti) fcc (L12) a=0.3589
γ Ni3Nb bct (DO22) c=0.7406 (c/a=2.04)
δ Ni3Nb Orthogonal (DOa) a=0.5141, b=0.4231, c=0.4534
MX (Nb, Ti)(C, N) fcc (B1) a=0.443~0.444
Laves (Ni, Cr, Fe)2(Nb, Mo, Ti) Hexagonal -
Table 1  Crystal structure and composition of main precipitated phases in Inconel 718 alloy[15-17]
Fig.1  Schematic diagram of the typical true stress-true strain curve of Inconel 718 alloy[27] (σtran.—transition stress, σpeak—peak stress, σsteady—steady stress, WH—work hardening, DRV—dynamic recovery, DRX—dynamic recrystallization)
Fig.2  Precipitation-temperature-time (PTT) diagram of the various phases of Inconel 718 alloy[33]
Fig.3  Schematic diagram for the spheroidization of plate-like δ phase in the microstructure of Inconel 718 superalloy[34]
Fig.4  Onset (Tonset), peak (Tpeak) and end (Tend) temperatures, of the γ″-phase precipitation (a) and the δ-phase (b) for different degrees cold-rolled Inconel 718 alloy samples[44]
Fig.5  Heat affected zone (HAZ) cracking of electron beam welded Inconel 718 superalloy relative to the different welding speeds[71]
[1] Guan Y S, Liu E Z, Guan X R, Liu Z.J Mater Sci Technol, 2016; 32: 271
[2] Dong J X, Liu X B, Tang B, Hu Y H, Xu Z C, Xie X S.Acta Metall Sin, 1996; 32: 241
[2] (董建新, 刘兴博, 唐宾, 胡尧和, 徐志超, 谢锡善. 金属学报, 1996; 32: 241)
[3] Zhang Y W, Hu B F.Acta Metall Sin, 2015; 51: 967
[3] (张义文, 胡本芙. 金属学报, 2015; 51: 967)
[4] Rao G A, Kumar M, Srinivas M, Sarma D S.Mater Sci Eng, 2003; A355: 114
[5] Dong X M, Zhang X L, Du K, Zhou Y Z, Jin T, Ye H Q.J Mater Sci Technol, 2012; 28: 1031
[6] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, Dimiduk D M, Fraser H L.Acta Mater, 2009; 57: 2538
[7] Li X W, Wang L, Dong J S, Lou L H.J Mater Sci Technol, 2014; 30: 1296
[8] Ma D X.Acta Metall Sin, 2015; 51: 1179
[8] (马德新. 金属学报, 2015; 51: 1179)
[9] Liu T, Dong J S, Wang L, Li Z J, Zhou X T, Lou L H, Zhang J.J Mater Sci Technol, 2015; 31: 269
[10] Xu Z H, Wang Z K, Niu J, Dai J W, He L M, Mu R D.J Alloys Compd, 2016; 676: 231
[11] Bai M W, Jiang H B, Chen Y, Chen Y Q, Grovenor C, Zhao X F, Xiao P.Mater Des, 2016; 97: 364
[12] Song K, Yu K, Lin X, Yang J, Hu H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[12] (宋衎, 喻恺, 林鑫, 杨静, 胡海鸥, 黄卫东. 金属学报, 2015; 51: 935)
[13] Kirman I, Warrington D H.Metall Trans, 1970; 1A: 2667
[14] Zhao X B, Gu Y F, Lu J T, Yan J B, Yin H F.Rare Met Mater Eng, 2015; 44: 768
[14] (赵新宝, 谷月峰, 鲁金涛, 严靖博, 尹宏飞. 稀有金属材料与工程, 2015; 44: 768)
[15] Wlodek S T, Field R D.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 659
[16] Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1988; 19A: 453
[17] Damodaram R, Raman S G S, Satyanarayana D V V, Madhusudhan R G, Prasad R K.Mater Sci Eng, 2014; A612: 414
[18] Sundararaman M, Banerjee S.Metall Mater Trans, 1992; 23A: 2015
[19] Sundararaman M, Mukhopadhyay P, Banerjee S.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 419
[20] Asadian S, Wei L Y, Warren R.Mater Charact, 2004; 53: 7
[21] Wang W Q.Aviat Manuf Eng, 1995; (7): 15
[21] (汪文迁. 航空制造工程, 1995; (7): 15)
[22] Zhou X H.Forging Technol, 2004; 29(5): 9
[22] (周晓虎. 锻压技术, 2004; 29(5): 9)
[23] Cai D Y, Zhang W H, Liu W C.Trans Nonferrous Met Soc China, 2003; 13: 1338
[24] Sellars C M, Tegart W J.Met Sci Rev Methods, 1996; 63: 731
[25] Biswas S, Reddy G M, Mohandas T, Murthy V S.J Mater Sci, 2004; 39: 6813
[26] Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F.Acta Mater, 2014; 65: 270
[27] Lin Y C, Wen D X, Deng J, Chen J.Mater Des, 2014; 59: 115
[28] Findley K O, Evans J L, Saxena A.Int Mater Rev, 2011; 56: 49
[29] Garcia C I, Wang G D, Camus D E, Loria E A, De Ardo A J. In: Loria E A ed., 3rd Int Symp on Superalloys 718, 626, 706, and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 293
[30] Ning Y Q, Fu M W, Chen X.Mater Sci Eng, 2012; A540: 164
[31] Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T.Mater Sci Eng, 2014; A591: 183
[32] Wen D X, Lin Y C, Chen J, Chen X M, Zhang J L, He M.Mater Sci Eng, 2015; A620: 319
[33] Thomas A, El-Wahabi M, Cabrera J M, Prad J M.J Mater Process Technol, 2006; 177: 469
[34] Zhang H Y, Zhang S H, Cheng M, Li Z X.Mater Charact, 2010; 61: 49
[35] Cheng M, Zhang H Y, Zhang S H.J Mater Sci, 2012; 47: 251
[36] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M.J Alloys Compd, 2009; 474: 341
[37] Nalawade S A, Sundararaman M, Singh J B, Verma A, Kishore R.Mater Sci Eng, 2010; A527: 2906
[38] Lin Y C, Li K K, Li H B, Wen D X.Mater Des, 2015; 74: 108
[39] Chen X M, Lin Y C, Wen D X, Zhang J L, He M.Mater Des, 2014; 57: 568
[40] Lin Y C, Chen X M, Wen D X, Chen M S.Comp Mater Sci, 2014; 83: 282
[41] Feng Y J.Master Thesis, Harbin Institute of Technology, 2012
[41] (冯莹娟. 哈尔滨工业大学硕士学位论文, 2012)
[42] Liu W C, Xiao F R, Yao M.Scr Mater, 1997; 37: 53
[43] Wei X P, Zheng W J, Song Z G, Lei T, Yong Q L, Xie Q C.J Iron Steel Res Int, 2014; 21: 375
[44] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.J Alloys Compd, 2015; 649: 949
[45] Wang Y.Master Thesis, Harbin Institute of Technology, 2008
[45] (王岩. 哈尔滨工业大学硕士学位论文, 2008)
[46] Lin Y C, Deng J, Jiang Y Q, Liu G.Mater Des, 2014; 55: 949
[47] Kashyap B P, Chaturvedi M C. Mater Sci Eng, 2007; A445-446: 364
[48] Huang Y, Langdon T G.J Mater Sci, 2007; 42: 421
[49] Ning Y Q, Huang S B, Fu M W, Dong J.Mater Charact, 2015; 109: 36
[50] Deng G J, Tu S T, Zhang X C, Wang J, Zhang C C, Qian X Y, Wang Y N.Eng Fract Mech, 2016; 153: 35
[51] Hu D Y, Mao J X, Song J, Meng F C, Shan X M, Wang R Q.Mater Sci Eng, 2016; A669: 318
[52] Ding T S, Zhang X C, Tu S D, Xuan F Z.Trans Mater Heat Treat, 2016; 37(4): 69
[52] (丁天胜, 张显程, 涂善东, 轩福贞. 材料热处理学报, 2016; 37(4): 69)
[53] Wang R Z, Zhang X C, Liu F, Yao L L, Tu S T.Procedia Eng, 2015; 130: 1088
[54] Chen G, Zhang Y, Xu D K, Chen X.Mater Sci Eng, 2016; A655: 175
[55] Xiao L, Chen D L, Chaturvedi M C.Mater Sci Eng, 2008; A483: 369
[56] Xiao L, Chen D L, Chaturvedi M C.Scr Mater, 2005; 52: 603
[57] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X H.Rare Met Mater Eng, 2012; 41: 1651
[57] (田素贵, 李振荣, 赵中刚, 陈礼清, 孙文儒, 刘相华. 稀有金属材料与工程, 2012; 41: 1651)
[58] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X F.Mater Sci Eng, 2012; A550: 235
[59] Caliari F R, Candioto K C G, Couto A A, Nunes C ?, Reis D A P.J Mater Eng Perform, 2016; 25: 2307
[60] Kuo C M, Yang Y T, Bor H Y, Wei C N, Tai C C. Mater Sci Eng, 2009; A510-511: 289
[61] Song H W, Guo S R, Hu Z Q.Scr Mater, 1999; 41: 215
[62] Yeh A C, Lu K W, Kuo C M, Borc H Y, Wei C N.Mater Sci Eng, 2011; A530: 525
[63] Richards N L, Chaturvedi M C.Int Mater Rev, 2000; 45: 109
[64] Damodaram R, Raman S G S, Rao K P.Mater Sci Eng, 2013; A560: 781
[65] Damodaram R, Raman S G S, Rao K P.Mater Des, 2014; 53: 954
[66] Idowu O A, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2007; A454: 389
[67] Manikandan S G K, Sivakumar D, Kamaraj M, Prasad K.Mater Sci Forum, 2012; 710: 614
[68] Ramkumar K D, Sridhar R, Periwal S, Oza S, Saxena V.Mater Des, 2015; 68: 158
[69] Koleva E G, Mladenov G M, Trushnikov D N, Belenkiy V Y.J Mater Process Technol, 2014; 214: 1812
[70] Khodir S, Shibayanagi T, Takahashi M, Abdel-Aleem H, Ikeuchi K, Hidad P, Arivazhagan N.Mater Des, 2014; 60: 391
[71] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.Mater Des, 2016; 89: 964
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[10] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[11] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[14] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[15] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
No Suggested Reading articles found!