For the manufacture of complicated metallic structural components in power plants, aerospace and defense industry, Inconel 718 superalloy has been widely employed. High-temperature fatigue resistance and creep rupture strength of Inconel 718 superalloy are susceptible to the microstructure evolution in manufacture processing. Previous research work is generally focused on the parameter optimization of hot working processes (directional solidification, heat treatment, forging and welding). Relationships between the cold deformation, hot working, welding and the high-temperature mechanical performance, are seldom discussed, especially in the light of precipitate control . In this work, various types of secondary phases in Inconel 718 alloy are reviewed, including the primary strengthening phase (γ'' phase), secondary strengthening phase (γ' phase), equilibrium phase of γ'' phase (δ phase), MX-type carbonitride and Laves phase. Precipitation mechanisms of secondary phases in Inconel 718 alloy are also reviewed, as well as the effects of different types of precipitates on high-temperature performance of the Inconel 718 alloy. With respect to the high-energy electron beam welding of Inconel 718 alloys, factors contributing to the cracking in heat affected zone are indicated.
Fund: Supported by National High Technology Research and Development Program of China (No.2015-AA042504), National Natural Science Foundation of China (No.51474156) and China National Funds for Distinguished Young Scientists (No.51325401)
Table 1 Crystal structure and composition of main precipitated phases in Inconel 718 alloy[15-17]
Fig.1 Schematic diagram of the typical true stress-true strain curve of Inconel 718 alloy[27] (σtran.—transition stress, σpeak—peak stress, σsteady—steady stress, WH—work hardening, DRV—dynamic recovery, DRX—dynamic recrystallization)
Fig.2 Precipitation-temperature-time (PTT) diagram of the various phases of Inconel 718 alloy[33]
Fig.3 Schematic diagram for the spheroidization of plate-like δ phase in the microstructure of Inconel 718 superalloy[34]
Fig.4 Onset (Tonset), peak (Tpeak) and end (Tend) temperatures, of the γ″-phase precipitation (a) and the δ-phase (b) for different degrees cold-rolled Inconel 718 alloy samples[44]
Fig.5 Heat affected zone (HAZ) cracking of electron beam welded Inconel 718 superalloy relative to the different welding speeds[71]
[1]
Guan Y S, Liu E Z, Guan X R, Liu Z.J Mater Sci Technol, 2016; 32: 271
[2]
Dong J X, Liu X B, Tang B, Hu Y H, Xu Z C, Xie X S.Acta Metall Sin, 1996; 32: 241
Wlodek S T, Field R D.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 659
[16]
Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1988; 19A: 453
[17]
Damodaram R, Raman S G S, Satyanarayana D V V, Madhusudhan R G, Prasad R K.Mater Sci Eng, 2014; A612: 414
[18]
Sundararaman M, Banerjee S.Metall Mater Trans, 1992; 23A: 2015
[19]
Sundararaman M, Mukhopadhyay P, Banerjee S.In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 419
[20]
Asadian S, Wei L Y, Warren R.Mater Charact, 2004; 53: 7
[21]
Wang W Q.Aviat Manuf Eng, 1995; (7): 15
[21]
(汪文迁. 航空制造工程, 1995; (7): 15)
[22]
Zhou X H.Forging Technol, 2004; 29(5): 9
[22]
(周晓虎. 锻压技术, 2004; 29(5): 9)
[23]
Cai D Y, Zhang W H, Liu W C.Trans Nonferrous Met Soc China, 2003; 13: 1338
[24]
Sellars C M, Tegart W J.Met Sci Rev Methods, 1996; 63: 731
[25]
Biswas S, Reddy G M, Mohandas T, Murthy V S.J Mater Sci, 2004; 39: 6813
[26]
Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F.Acta Mater, 2014; 65: 270
[27]
Lin Y C, Wen D X, Deng J, Chen J.Mater Des, 2014; 59: 115
[28]
Findley K O, Evans J L, Saxena A.Int Mater Rev, 2011; 56: 49
[29]
Garcia C I, Wang G D, Camus D E, Loria E A, De Ardo A J. In: Loria E A ed., 3rd Int Symp on Superalloys 718, 626, 706, and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 293
[30]
Ning Y Q, Fu M W, Chen X.Mater Sci Eng, 2012; A540: 164
[31]
Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T.Mater Sci Eng, 2014; A591: 183
[32]
Wen D X, Lin Y C, Chen J, Chen X M, Zhang J L, He M.Mater Sci Eng, 2015; A620: 319
[33]
Thomas A, El-Wahabi M, Cabrera J M, Prad J M.J Mater Process Technol, 2006; 177: 469
[34]
Zhang H Y, Zhang S H, Cheng M, Li Z X.Mater Charact, 2010; 61: 49
[35]
Cheng M, Zhang H Y, Zhang S H.J Mater Sci, 2012; 47: 251
[36]
Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M.J Alloys Compd, 2009; 474: 341
[37]
Nalawade S A, Sundararaman M, Singh J B, Verma A, Kishore R.Mater Sci Eng, 2010; A527: 2906
[38]
Lin Y C, Li K K, Li H B, Wen D X.Mater Des, 2015; 74: 108
[39]
Chen X M, Lin Y C, Wen D X, Zhang J L, He M.Mater Des, 2014; 57: 568
[40]
Lin Y C, Chen X M, Wen D X, Chen M S.Comp Mater Sci, 2014; 83: 282
[41]
Feng Y J.Master Thesis, Harbin Institute of Technology, 2012
[41]
(冯莹娟. 哈尔滨工业大学硕士学位论文, 2012)
[42]
Liu W C, Xiao F R, Yao M.Scr Mater, 1997; 37: 53
[43]
Wei X P, Zheng W J, Song Z G, Lei T, Yong Q L, Xie Q C.J Iron Steel Res Int, 2014; 21: 375
[44]
Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J.J Alloys Compd, 2015; 649: 949
[45]
Wang Y.Master Thesis, Harbin Institute of Technology, 2008
[45]
(王岩. 哈尔滨工业大学硕士学位论文, 2008)
[46]
Lin Y C, Deng J, Jiang Y Q, Liu G.Mater Des, 2014; 55: 949
[47]
Kashyap B P, Chaturvedi M C. Mater Sci Eng, 2007; A445-446: 364
[48]
Huang Y, Langdon T G.J Mater Sci, 2007; 42: 421
[49]
Ning Y Q, Huang S B, Fu M W, Dong J.Mater Charact, 2015; 109: 36
[50]
Deng G J, Tu S T, Zhang X C, Wang J, Zhang C C, Qian X Y, Wang Y N.Eng Fract Mech, 2016; 153: 35
[51]
Hu D Y, Mao J X, Song J, Meng F C, Shan X M, Wang R Q.Mater Sci Eng, 2016; A669: 318
[52]
Ding T S, Zhang X C, Tu S D, Xuan F Z.Trans Mater Heat Treat, 2016; 37(4): 69
[52]
(丁天胜, 张显程, 涂善东, 轩福贞. 材料热处理学报, 2016; 37(4): 69)
[53]
Wang R Z, Zhang X C, Liu F, Yao L L, Tu S T.Procedia Eng, 2015; 130: 1088
[54]
Chen G, Zhang Y, Xu D K, Chen X.Mater Sci Eng, 2016; A655: 175
[55]
Xiao L, Chen D L, Chaturvedi M C.Mater Sci Eng, 2008; A483: 369
[56]
Xiao L, Chen D L, Chaturvedi M C.Scr Mater, 2005; 52: 603
[57]
Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X H.Rare Met Mater Eng, 2012; 41: 1651