Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1279-1296    DOI: 10.11900/0412.1961.2016.00323
Orginal Article Current Issue | Archive | Adv Search |
RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING
Tao JING1(),Sansan SHUAI1,Mingyue WANG2,Qiwei ZHENG1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Cite this article: 

Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING. Acta Metall Sin, 2016, 52(10): 1279-1296.

Download:  HTML  PDF(14657KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a typical hexagonal close-packed structure metal, the dendritic morphology and preferential orientation of Mg would be influenced by many factors. Current investigations still fall short on the thorough description of the diversity and complexity of dendrites growth patterns and their origination, therefore, this paper re viewed recent research progress of this group on 3D characterization of microstructure in solidified magnesium alloys. Using synchrotron X-ray tomography and phase-field modeling, the formation mechanism of the diverse α-Mg (X) dendrites and the affections of alloying element (such as Al, Ca, Zn, and Sn), solute concentration on the growth selection and evolution of α-Mg dendrites during solidification were studied. The results indicate that the alloying elements and solute concentration would impose a significant influence on the morphology and orientation selection of the primary α-Mg dendrites. In Mg-Ca and Mg-Al (hcp-fcc) alloys, dendrites tend to grow with preferred orientation of <112?0> or <224?5> which is in good agreement with the traditional expected direction. The equiaxed growth dendrites in Mg-Sn (hcp-bct) alloys evolve as a structure with 18 branches, six of which grow on the basal plane along <112?0> and the remaining 12 along <112?X> (X≈2) off the basal plane. For the case in Mg-Zn alloys, an orientation transition from <112?0> on the basal plane to <112?1> off the basal plane are observed with the increasing addition of Zn alloying element, a hyperbranched seaweed structure is also revealed with an interim composition. A probable explanation is that the addition of high anisotropy Zn would slightly alter the anisotropy of interfacial free energy in front of the growth interface which results in a dendrite orientation transition (DOT). These findings partially reveal the underlying formation mechanism and origination of the diversity dendritic morphologies and branching structures of α-Mg dendrites in Mg alloys. Furthermore, with the fast X-ray imaging facility, in situ observations of the 3D microstructure evolution in Mg alloys during solidification are also carried out and the evolution of α-Mg dendrites are obtained for further analysis.

Key words:  Mg alloy      solidification      3D dendritic morphology      phase-field simulation      X-ray tomography     
Received:  22 July 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (No.51175292) and Innovation Platform for Through Process Modeling and Simulation of Advanced Materials Processing Technologies Project (No.2012ZX04012-011)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00323     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1279

Crystal structure Preferred orientation Example
fcc <100> Al, Cu, Ni, γ-Fe
bcc <100> δ-Fe, succinonitrile, NH4Cl
bct <110> Sn
hcp <101?0> H2O, Zn
<112?0> Mg
Table 1  Preferential growth orientations in metals with different crystal structures[34]
Fig.1  OM images of Mg-9Al-0.7Zn (mass fraction, %) alloy
(a) normal casting (b) quenched
Fig.2  Schematic of X-ray tomography[39] (CCD—charge-coupled device )
Fig.3  Shanghai synchrotron radiation facility (SSRF) (a) and experimental set-up in BL13W1, SSRF (b)
Fig.4  Selecting different functions for image processing method for processing experimental images
Fig.5  Reconstructured 3D α-Mg dendrite morphology with 2Dlivewire algorithm from a X-ray tomography[23,29]
(a) 2D slice (b) reconstructed 3D result
Fig.6  Nucleation selection and 3D dendritic morphology of α-Mg in Mg-Ca alloy
(a) 2D dendritic morphology (b) 3D dendritic morphology (c) 5 arms evolving around the trunk (d) 4 arms evolving around the trunk (e) 3 arms evolving around the trunk
Fig.7  Microstructures of equiaxed growth α-Mg(Ca) dendrites
(a) dendritic morphology and angles between arms in different first sections of Mg-Ca alloy
(b) dendritic morphology and angles between arms in different second sections of Mg-Ca alloy
(c) skeleton of α-Mg(Ca)
(d) angles between plane 1 and plane 2
(e) dendrite growth pattern of α-Mg(Ca)
Fig.8  3D α-Mg dendritic morphologies (a~d) and branching structures (a1~d1, a2~d2) in Mg-Zn alloys with different Zn contents (S1 is the basal plane, and S2, S3 and S4 indicate the cylindrical plane)
(a, a1, a2) Mg-10%Zn (b, b1, b2) Mg-25%Zn (c, c1, c2) Mg-38%Zn (d, d1, d2) Mg-50%Zn
Fig.9  α-Mg dendrite growth orientation of Mg-50%Zn
(a) SEM image (b) EBSD image (Inset shows the orientation of the dendrite) (c) pole and inverse pole figures
Fig.10  Misorientation angles (φ) between the split dendrite arms and the basal plane in Mg-Zn alloys (a) and <100> in Al-Zn alloys (b)[35] as a function of Zn concentration (a1, a2, a3, c—axises of a hcp crystal structure, ε1—anisotropic parameter)
Fig.11  Morphology (a), branching structures (b, c) and growth pattern (d) of an α-Mg dendrite in Mg-Sn alloy
Fig.12  Diverse growth patterns observed in Mg alloy
(a) Mg-9%Al and Mg-10%Zn, 6-fold plate like structure
(b) Mg-25%Zn, 6-fold structure with dendrite tip split from the basal plane
(c) Mg-15%Sn, 6-fold structure with 18 branch arms
(d) Mg-50%Zn, 6-fold structure with 12 branch arms
Fig.13  Graphics of different anisotropic functions for corresponding dendrite growth patterns (e1, e2 and e3 indicate the anisotropic parameters for different growth directions)
(a) Mg-9%Al and Mg-10%Zn (e1=0.05, e2=0.2, e3=0.2) (b) Mg-25%Zn (e1=0.05, 1/e2=0, e3=0.04 ) (c) Mg-15%Sn/Mg-9%Ca (e1=0.05, e2=0.08, e3=0.02) (d) Mg-50%Zn (e1=0.05, e2=0.2, e3=0.07)
Fig.14  Phase field modeling for an α-Mg dendrites in Mg-25%Zn alloy
(a~e) top views for different time steps (dt) (f~j) sections of front view for different time steps
Fig.15  Comparison of metallographic (a, b) with results from phase field modeling (c, d)
(a, c) sections on the prismatic plane (b, d) perspective from the basal plane
Fig.16  Comparison of real dendritic morphologies (a~c) of α-Mg in Mg-15%Sn alloy with phase field simulation (d~f)
(a, d) 3D rendering of the whole dendrite (b, e) sections on the basal plane (c, f) sections on the prismatic center plane
Fig.17  α-Mg dendrite evolutions in Mg-15%Sn alloy with different times and temperatures as shown by a series of 2D slices under a cooling rate of 3 ℃/min (T0—temperature when dendritic structure is first observed)
(a) 0 s, T0 (b) 195 s, T0-9.3 ℃ (c) 289 s, T0-14.5 ℃ (d) 469 s, T0-23.2 ℃ (e) 850 s, T0-50.5 ℃
Fig.18  α-Mg dendrite evolutions in Mg-15%Sn alloy with different times and temperatures as shown by a series of 2D slices under a cooling rate of 12 ℃/min
(a) 0 s, T0 (b) 36 s, T0-6.6 ℃ (c) 72 s, T0-13.2 ℃ (d) 146 s, T0-27.6 ℃ (e) 452 s, T0-111.8 ℃
Fig.19  3D surface rendering of an isolated dendrite evolution with solid fraction during solidification (fs) of Mg-15%Sn alloy for the cooling rate of 3 ℃/min
(a) fs= 0.07 (b) fs= 0.30 (c) fs= 0.39 (d) fs= 0.50 (e) fs= 0.79
Fig.20  3D surface rendering of an isolated dendrite evolution with solid fraction during solidification of Mg-15%Sn alloy for the cooling rate of 12 ℃/min
(a) fs=0.23 (b) fs=0.39 (c) fs=0.54 (d) fs=0.74
[1] Chen Z H, Yan H G, Chen J H. Magnesium Alloys.Beijing: Chemical Industry Press, 2004: 2
[1] (陈振华, 严红革, 陈吉华. 镁合金. 北京:化学工业出版社, 2004: 2)
[2] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[3] Pollock T M.Science, 2010; 328: 986
[4] Flemings M C.Metall Trans, 1974; 5: 2121
[5] Flemings M C.Mater Trans, 2005; 46: 895
[6] Glicksman M E.Principles of Solidification: an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science & Business Media, 2010: 101
[7] Mendoza R.PhD Dissertation, Northwestern University, Evanston, 2004
[8] Mendoza R, Savin I, Thornton K, Voorhees P W.Nat Mater, 2004; 3: 385
[9] Kammer D, Voorhees P W.Acta Mater, 2006; 54: 1549
[10] Xu W, Ferry M, Mateescu N, Cairney J M, Humphreys F J.Mater Charact, 2007; 58: 961
[11] Rowenhorst D J, Gupta A, Feng C R, Spanos G.Scr Mater, 2006; 55: 11
[12] Rowenhorst D J, Lewis A C, Spanos G.Acta Mater, 2010; 58: 5511
[13] Spanos G, Geltmacher A B, Lewis A C, Bingert J F, Mehl M, Papaconstantopoulos D, Mishin Y, Gupta A, Matic P.Mater Sci Eng, 2007; A452: 558
[14] Spanos G, Rowenhorst D J, Lewis A C, Geltmacher A B.MRS Bulletin, 2008; 33: 597
[15] Macsleyne J, Uchic M D, Simmons J P, Graef M D.Acta Mater, 2009; 57: 6251
[16] Wilson J R, Kobsiriphat W, Mendoza R, Chen H Y, Hiller J M, Miller D J, Thornton K, Voorhees P W, Adler S B, Barnett S A.Nat Mater, 2006; 5: 541
[17] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849
[18] Maire E, Withers P J.Int Mater Rev, 2014; 59: 1
[19] Manuwong T, Zhang W, Kazinczi P L, Bodey A J, Rau C, Mi J.Metall Mater Trans, 2015; 46A: 2908
[20] Puncreobutr C, Lee P D, Hamilton R W, Cai B, Connolley T.Metall Mater Trans, 2013; 44A: 5389
[21] Terzi S, Salvo L, Suery M, Dahle A K, Boller E.Acta Mater, 2010; 58: 20
[22] Tolnai D, Townsend P, Requena G, Salvo L, Lendvai J, Degischer H P.Acta Mater, 2012; 60: 2568
[23] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Scr Mater, 2011; 65: 855
[24] Wang M Y, Xu Y J, Jing T, Peng G Y, Fu Y N, Chawla N.Scr Mater, 2012; 67: 629
[25] Maire E, Babout L, Buffiere J, Fougeres R.Mater Sci Eng, 2001; A321: 216
[26] Pettersen K, Lohne O, Ryum N.Metall Mater Trans, 1990; 21A: 221
[27] Pettersen K, Ryum N.Metall Mater Trans, 1989; 20A: 847
[28] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T.Mater Charact, 2016; 111: 170
[29] Wang M Y, Jing T, Liu B C.Scr Mater, 2009; 61: 777
[30] Wang M Y, Xu Y J, Zheng Q W, Wu S J, Jing T, Chawla N.Metall Mater Trans, 2014; 45A: 2562
[31] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Metall Micro Ana, 2012; 1: 7
[32] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T, Fu Y.Mater Charact, 2016; 118: 304
[33] Shuai S S, Guo E Y, Wang M Y, Callaghan M D, Jing T, Zheng Q W, Lee P D.Metall Mater Trans, 2016; 47A: 4368
[34] Gonzales F, Rappaz M.Metall Mater Trans, 2006; 37A: 2797
[35] Haxhimali T, Karma A, Gonzales F, Rappaz M.Nat Mater, 2006; 5: 660
[36] Dantzig J A, Rappaz M.Solidification. Lausanne: EPFL Press, 2009: 289
[37] Mathiesen R H, Arnberg L, Bleuet P, Somogyi A.Metall Mater Trans, 2006; 37A: 2515
[38] Ludwig O, Dimichiel M, Salvo L, Suery M, Falus P.Metall Mater Trans, 2005; 36A: 1515
[39] Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K.Acta Mater, 2009; 57: 2300
[40] Kak A C.Digital Image Processing Techniques. Orlando: Acdemic Press Inc; 1984: 111
[41] SSRF
[42] ImageJ.
[43] Avizo
[44] Karma A, Rappel W J.Phys Rev Lett, 1996; 77: 4050
[45] Karma A, Rappel W J.Phys Rev, 1998; 57E: 4323
[46] Boettinger W J, Warren J A, Beckermann C, Karma A.Anu Rev Mater Res, 2002; 32: 163
[47] Ramirez J C, Beckermann C, Karma A, Diepers H J.Phys Rev, 2004; 69E: 051607
[48] Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J.Phys Rev, 2006; 73B: 1
[49] Xu W, Horsfield A P, Wearing D, Lee P D.J Alloys Compd, 2015; 650: 228
[50] Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M.Energy, 2014; 72: 414
[51] Friedli J, Fife J L, Di Napoli P, Rappaz M.Metall Mater Trans, 2013; 44A: 5522
[52] Friedli J, Fife J L, Di Napoli P, Rappaz M.IOP Conf Series: Mater Sci Eng, 2012; 33: 012034
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[6] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[7] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[8] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[9] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[10] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[11] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[12] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[13] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[14] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[15] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
No Suggested Reading articles found!