Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1125-1143    DOI: 10.11900/0412.1961.2023.00223
Overview Current Issue | Archive | Adv Search |
Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys
FENG Qiang1(), LU Song1, LI Wendao1,2, ZHANG Xiaorui1, LI Longfei1(), ZOU Min1, ZHUANG Xiaoli1
1Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Cite this article: 

FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys. Acta Metall Sin, 2023, 59(9): 1125-1143.

Download:  HTML  PDF(5697KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, with the development of aviation engines and ground-based gas turbines, the demands for the environmental resistance and temperature-bearing capacity of their key hot-end components have considerably increased. Compared to Ni-based superalloys, novel γ′-strengthened Co-based superalloys are more advantageous owing to their corrosion resistance and melting temperature. To facilitate the development of these alloys, research on their alloying principles, alloy design, and creep mechanisms is summarized in this paper based on domestic and international results. Furthermore, herein, the key scientific problems in the development of such alloys are discussed, and the possible development trends and challenges in the future are surveyed.

Key words:  Co-based superalloy      γ'-strengthened      alloying      alloy design      creep     
Received:  18 May 2023     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(52171095);National Natural Science Foundation of China(52201100);National Natural Science Foundation of China(52201024);National Natural Science Foundation of China(51771019);National Natural Science Foundation of China(92060113);National Key Research and Development Program of China(2017YFB0702902);China Postdoctoral Science Foundation(2022M710346)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00223     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1125

TypeElementRadiusDensityPositive effectNegative effect
nmg·cm-3
γ formerCo0.1258.9--
Ni0.1258.9Enlarge γ + γ' regionForm η phase with Ti
Cr0.1287.2Enhance oxidation/corrosionDecrease the stability of γ' phase, form
resistancesecondary phases
Fe0.1267.9Stabilize γ phaseDecrease the stability of γ' phase
γ′ formerAl0.1432.7Stabilize γ' phase, enhanceForm β phase
oxidation resistance
W0.14119.4Stabilize γ' phase,Increase alloy density, form μ and χ phases
enhance creep property
Ti0.1724.5Stabilize γ' phase,Form β and η phases
enhance creep property
Ta0.14716.5Stabilize γ' phase,Form μ and χ phases
enhance creep property
Mo0.14010.2Solution strengtheningForm μ and χ phases
Nb0.1478.5Stabilize γ′ phase,Form μ, χ, and Laves phases
enhance strength
V0.1356.1Stabilize γ′ phase,Decrease oxidation resistance
enhance strength
Hf0.15913.3Stabilize γ′ phase,Form Laves phase
enhance strength
Table 1  Typical elements and their effect on the γ'-strengthened Co-based superalloys
Fig.1  Effects of temperature (T) on lattice misfit (δ) in γ'-strengthened Co-based (a)[15] and Ni-based (b)[23] superalloys (aγ —lattice constant of γ phase, aγ' —lattice constant of γ' phase)
Fig.2  Elemental partitioning between γ and γ' phases in a γ'-strengthened Co-based superalloy[26] (HAADF—high-angle annular dark field)
Alloy (atomic fraction / %)Tγ'-solvus / oCRef.
Co-9Al-9.8W990[33]
Co-8.8Al-9.8W-2Ta1079[1,33]
Co-7Al-8W-4Ti-1Ta1131[32]
Co-7Al-7W-4Ti-2Ta1157[13]
Co-7Al-6W-4Ti-2Ta-1Mo1143[7]
Co-7Al-6W-4Ti-2Ta-1Nb1150[7]
Co-10Ni-5Al-5W-8Ti1137[34]
Co-20Ni-9Al-6W-4Ta-2Mo1178[21]
Co-30Ni-7Al-7W-4Ti-1Ta1167[25]
Co-30Ni-11Al-4W-4Ti-1Ta1202[35]
Co-30Ni-10.5Al-4Ti-7W-2.5Ta1269[36]
Co-30Ni-11Al-4W-4Ti-1Ta-5Cr1173[37]
Co-30Ni-10Al-5Mo-2Ta-2Ti-10Cr1078[38]
Co-35.4Ni-9.9Al-4.9Mo-2.8Ta-3.5Ti-5.9Cr1156[39]
Co-32Ni-9Al-2W-1Ti-1Ta-14Cr-2.5Mo-0.5Nb1050[40]
Co-32Ni-11Al-2W-2Ti-3Ta-5Cr-0.5Mo-0.5Nb1201[41]
Ni-based wrought superalloy928-1159[6,10,11]
Ni-based single crystal superalloy1221-1330[6,10,11,42]
Table 2  Nominal compositions and γ' solvus temperature (Tγ'-solvus) of some γ'-strengthened Co-based superalloys[1,6,7,10,11,13,21,25,32-42]
Fig.3  Mean diffusion coefficients (D¯) of some alloying elements of fourth (a) and fifth (b) period in Co and Ni[47]
Fig.4  Schematics of alloy design for multi-component Co-based superalloys based on multicomponent diffusion-multiple[5,26]
Fig.5  Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))
Fig.6  Effect of Ti and Ta elements on creep properties of Co-Al-W-based single crystal superalloys[13]
Fig.7  Microstructural evolutions during the tensile creep process of a Co-Al-W-based single crystal superalloys with the positive misfit at 900oC and 420 MPa[98] (Insets show the γ/γ' microstructures during the creep process, and the red circles indicate the topological inversed microstructure. σ—stress)
Fig.8  Atomic structures of superlattice intrinsic stacking fault (SISF) (a)[102] and superlattice extrinsic stacking fault (SESF) (b)[91] in the γ' phase as well as their schematic formation mechanisms (c) in γ'-strengthened Co-based single crystal superalloys (Inset in Fig.8a shows a center-of-symmetry map of the structure. LPD—leading partial dislocation, ISF—intrinsic stacking fault, APB—antiphase boundary, CISF—complex intrinsic stacking fault)
Fig.9  Different types of stacking fault (SF) interaction configurations in Co-Al-W-based single crystal superalloys[91]
(a) TEM image
(b-d) atomic resolution HAADF-scanning transmission electron microscopy (HAADF-STEM) images of V-type (b), T-type (c), and X-type (d) (Inset in Fig.9c shows an enlarged view of the red square, indicating a deviation between the SISF-2 and SISF-2′ planes)
Fig.10  Formation mechanism of APB-SISF-APB configuration in CoNi-based single crystal superalloys[28] ((1) two closely spaced Shockley partials approach the γ' phase on the (111) glide plane. (2) the leading partial enters the γ' phase, forming a SISF. (3) the trailing partial also enters the γ' phase, transforming the SISF into an APB. (4) the leading partial shears through the entire γ' phase, and the trailing partial forms a closed loop inside the γ' phase. (5) both of leading and trailing partials shear through the entire γ' phase, and partial dislocation loop surrounds an SISF and is embedded in an APB. The bottom-right corner right shows the corresponding dislocation schematic of SISF→APB transformation in the γ' phase. a—lattice constant of γ' phase, FL—dislocation line tension, Fτ —glide force resulting from the resolved shear stress, Ff—net force originating from difference between the APB and SISF energies, bAPB—Burgers vector of APB, bSISF—Burgers vector of SISF)
Fig.11  Schematic representations of the evolution of the γ/γ' microstructure and dislocation substructure in a γ'-strengthened Co-based single crystal superalloy during the deceleration (a), the minimum stable (b), onset of the global stable (c), near the end of the global stable (d), and the acceleration tensile creep (e) stages[90]
Fig.12  Influence of alloying elements on the SF (Co3TM) (a)[107]and APB (Co3Al0.75TM0.25) (b)[108] energies of γ' phase (ANNI—axial nearest-neighbor Ising, γAPB—APB energy, FP—first-principles calculation, Exp.—experiment)
Fig.13  Segregation-assisted transformation from complex stacking faults (CSFs) to superlattice stacking faults (SSFs) (a)[111] and SISF bounding by a Shockley partial dislocation in the γ' phase (b)[104] (CESF—complex extrinsic stacking fault, Inset in Fig.13b shows the Burgers vector ( b ) obtained from the Burgers circuit analysis)
Fig.14  Segregation-assisted γ'γ transformation in the γ'-strengthened Co-based single crystal superalloys (Insets show the fast Fourier transform (FFT) spectra confirming the ordered and disordered structure in the γ' and γ' regions)
(a) leading partial dislocation in a Co-Al-W-based single crystal superalloy[104]
(b) SF interaction in a CoNi-based single crystal superalloy[94]
1 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
2 ZXGG-SK01-8-2020 process specification for a precision casting of a Co-based single crystal turbine first-stage working blade [S]. 2020
ZXGG-SK01-8-2020 新型钴基单晶合金透平一级工作叶片精铸件工艺规程 [S]. 2020
3 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
4 Cui C Y, Ping D H, Gu Y F, et al. A new Co-base superalloy strengthened by γ' phase [J]. Mater. Trans., 2006, 47: 2099
doi: 10.2320/matertrans.47.2099
5 Li W D, Li L F, Wei C D, et al. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches [J]. J. Mater. Sci. Technol., 2021, 80: 139
doi: 10.1016/j.jmst.2020.10.080
6 Ooshima M, Tanaka K, Okamoto N L, et al. Effects of quaternary alloying elements on the γ' solvus temperature of Co-Al-W based alloys with FCC/L12 two-phase microstructures [J]. J. Alloys Compd., 2010, 508: 71
doi: 10.1016/j.jallcom.2010.08.050
7 Zhou H J, Li W D, Xue F, et al. Alloying effects on microstructural stability and γ' phase nano-hardness in Co-Al-W-Ta-Ti-base superalloys [A]. Superalloys 2016 [C]. Hoboken: Wiley, 2016: 981
8 Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γ' strengthened Co-Al-W base alloys [J]. Intermetallics, 2014, 48: 44
doi: 10.1016/j.intermet.2013.10.022
9 Bauer A, Neumeier S, Pyczak F, et al. Creep strength and microstructure of polycrystalline γ'-strengthened cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 695
10 Suzuki A, Inui H, Pollock T M. L12-strengthened cobalt-base superalloys [J]. Annu. Rev. Mater. Res., 2015, 45: 345
doi: 10.1146/matsci.2015.45.issue-1
11 Omori T, Oikawa K, Sato J, et al. Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems [J]. Intermetallics, 2013, 32: 274
doi: 10.1016/j.intermet.2012.07.033
12 Titus M S, Suzuki A, Pollock T M. High temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
13 Xue F, Zhou H J, Feng Q. Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti [J]. JOM, 2014, 66: 2486
doi: 10.1007/s11837-014-1181-y
14 Xue F, Zhou H J, Shi Q Y, et al. Creep behavior in a γ' strengthened Co-Al-W-Ta-Ti single-crystal alloy at 1000℃ [J]. Scr. Mater., 2015, 97: 37
doi: 10.1016/j.scriptamat.2014.10.015
15 Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
16 Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy [J]. Mater. Sci. Eng., 2020, A779: 139139
17 Fu H D, Zhang Y H, Xue F, et al. Microstructure and properties evolution of Co-Al-W-Ni-Cr superalloys by molybdenum and niobium substitutions for tungsten [J]. Metall. Mater. Trans., 2020, 51A: 299
18 Xue F, Wang M L, Feng Q. Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300oC and 900oC [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 813
19 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 46
20 Povstugar I, Zenk C H, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ' strengthened Co base superalloys [J]. Mater. Sci. Technol., 2016, 32: 220
doi: 10.1179/1743284715Y.0000000112
21 Tanaka K, Ooshima M, Okamoto N L, et al. Morphology change of γ' precipitates in γ/γ' two-phase microstructure in Co-based superalloys by higher-order alloying [J]. MRS Online Proc. Libr., 2011, 1295: 423
22 Li Y Z, Pyczak F, Stark A, et al. Temperature dependence of misfit in different Co-Al-W ternary alloys measured by synchrotron X-ray diffraction [J]. J. Alloys Compd., 2020, 819: 152940
doi: 10.1016/j.jallcom.2019.152940
23 Mughrabi H. The importance of sign and magnitude of γ/γ' lattice misfit in superalloys-with special reference to the new γ'-hardened cobalt-base superalloys [J]. Acta Mater., 2014, 81: 21
doi: 10.1016/j.actamat.2014.08.005
24 Coakley J, Lass E A, Ma D, et al. Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures [J]. Acta Mater., 2017, 136: 118
doi: 10.1016/j.actamat.2017.06.025
25 Lass E A, Sauza D J, Dunand D C, et al. Multicomponent γ'- strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities [J]. Acta Mater., 2018, 147: 284
doi: 10.1016/j.actamat.2018.01.034
26 Zhuang X L, Antonov S, Li L F, et al. γ'-strengthened multicomponent CoNi-based wrought superalloys with improved comprehensive properties [J]. Metall. Mater. Trans., 2023, 54A: 1671
27 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
28 Eggeler Y M, Müller J, Titus M S, et al. Planar defect formation in the γ' phase during high temperature creep in single crystal CoNi-base superalloys [J]. Acta Mater., 2016, 113: 335
doi: 10.1016/j.actamat.2016.03.077
29 Pandey P, Mukhopadhyay S, Srivastava C, et al. Development of new γ'-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength [J]. Mater. Sci. Eng., 2020, A790: 139578
30 Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ' high-temperature alloys [J]. JOM, 2010, 62(1): 58
31 Neumeier S, Freund L P, Göken M. Novel wrought γ/γ' cobalt base superalloys with high strength and improved oxidation resistance [J]. Scr. Mater., 2015, 109: 104
doi: 10.1016/j.scriptamat.2015.07.030
32 Xue F, Zhou H J, Ding X F, et al. Improved high temperature γ' stability of Co-Al-W-base alloys containing Ti and Ta [J]. Mater. Lett., 2013, 112: 215
doi: 10.1016/j.matlet.2013.09.023
33 Makineni S K, Samanta A, Rojhirunsakool T, et al. A new class of high strength high temperature Cobalt based γ-γ' Co-Mo-Al alloys stabilized with Ta addition [J]. Acta Mater., 2015, 97: 29
doi: 10.1016/j.actamat.2015.06.034
34 Bocchini P J, Sudbrack C K, Noebe R D, et al. Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys [J]. Mater. Sci. Eng., 2017, A705: 122
35 Li W D, Li L F, Antonov S, et al. Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ' solvus temperature and microstructural stability using combined CALPHAD and experimental approaches [J]. Mater. Des., 2019, 180: 107912
doi: 10.1016/j.matdes.2019.107912
36 Lass E A. Application of computational thermodynamics to the design of a Co-Ni-based γ'-strengthened superalloy [J]. Metall. Mater. Trans., 2017A, 48: 2443
37 Li W D, Li L F, Antonov S, et al. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ' phase nano-hardness of multi-component Co-Ni-base superalloys [J]. J. Alloys Compd., 2020, 826: 154182
doi: 10.1016/j.jallcom.2020.154182
38 Nithin B, Samanta A, Makineni S K, et al. Effect of Cr addition on γ-γ' cobalt-based Co-Mo-Al-Ta class of superalloys: A combined experimental and computational study [J]. J. Mater. Sci., 2017, 52: 11036
doi: 10.1007/s10853-017-1159-6
39 Pandey P, Kashyap S, Palanisamy D, et al. On the high temperature coarsening kinetics of γ' precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy [J]. Acta Mater., 2019, 177: 82
doi: 10.1016/j.actamat.2019.07.011
40 Zhuang X L, Antonov S, Li W D, et al. Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework [J]. Acta Mater., 2023, 243: 118525
doi: 10.1016/j.actamat.2022.118525
41 Zou M, Li W D, Li L F, et al. Machine learning assisted design approach for developing γ'-strengthened Co-Ni-base superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 937
42 Caron P. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 737
43 Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ' two-phase Co-Al-W-base alloys [J]. Acta Mater., 2008, 56: 1288
doi: 10.1016/j.actamat.2007.11.014
44 Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
45 Vorontsov V A, Barnard J S, Rahman K M, et al. Coarsening behaviour and interfacial structure of γ' precipitates in Co-Al-W based superalloys [J]. Acta Mater., 2016, 120: 14
doi: 10.1016/j.actamat.2016.08.023
46 Zhou H J, Xue F, Chang H, et al. Effect of Mo on microstructural characteristics and coarsening kinetics of γ' precipitates in Co-Al-W-Ta-Ti alloys [J]. J. Mater. Sci. Technol., 2018, 34: 799
doi: 10.1016/j.jmst.2017.04.012
47 Neumeier S, Rehman H U, Neuner J, et al. Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo [J]. Acta Mater., 2016, 106: 304
doi: 10.1016/j.actamat.2016.01.028
48 Lee C S. Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys [D]. Tucson: The University of Arizona, 1971
49 Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709 pmid: 27443900
50 Chen Y C, Wang C P, Ruan J J, et al. Development of low-density γ/γ' Co-Al-Ta-based superalloys with high solvus temperature [J]. Acta Mater., 2020, 188: 652
doi: 10.1016/j.actamat.2020.02.049
51 Chen Y C, Wang C P, Ruan J J, et al. High-strength Co-Al-V-base superalloys strengthened by γ'-Co3(Al, V) with high solvus temperature [J]. Acta Mater., 2019, 170: 62
doi: 10.1016/j.actamat.2019.03.013
52 Ruan J J, Liu X J, Yang S Y, et al. Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ' phase [J]. Intermetallics, 2018, 92: 126
doi: 10.1016/j.intermet.2017.09.015
53 Zenk C H, Volz N, Bezold A, et al. The effect of alloying on the thermophysical and mechanical properties of Co-Ti-Cr-based superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 909
54 Forsik S A J, Polar Rosas A O, Wang T, et al. High-temperature oxidation behavior of a novel Co-base superalloy [J]. Metall. Mater. Trans., 2018, 49A: 4058
55 Volz N, Zenk C H, Cherukuri R, et al. Thermophysical and mechanical properties of advanced single crystalline Co-base superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4099
56 Knop M, Mulvey P, Ismail F, et al. A new polycrystalline Co-Ni superalloy [J]. JOM, 2014, 66: 2495
doi: 10.1007/s11837-014-1175-9
57 Titus M S, Eggeler Y M, Suzuki A, et al. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys [J]. Acta Mater., 2015, 82: 530
doi: 10.1016/j.actamat.2014.08.033
58 Bocchini P J, Sudbrack C K, Noebe R D, et al. Temporal evolution of a model Co-Al-W superalloy aged at 650oC and 750oC [J]. Acta Mater., 2018, 159: 197
doi: 10.1016/j.actamat.2018.08.014
59 Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
60 Xu Y T, Xia T D, Yan J Q, et al. Effect of alloying elements on oxidation behavior of Co-Al-W alloys at high temperature [J]. Chin. J. Nonferrous Met., 2010, 20: 2168
doi: 10.1016/S1003-6326(09)60437-4
徐仰涛, 夏天东, 闫健强 等. 合金元素对Co-Al-W合金高温氧化行为的影响 [J]. 中国有色金属学报, 2010, 20: 2168
61 Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
刘兴军, 陈悦超, 卢 勇 等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
62 Zhu L L, Wei C D, Qi H Y, et al. Experimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiples [J]. J. Alloys Compd., 2017, 691: 110
doi: 10.1016/j.jallcom.2016.08.210
63 Cao B X, Kong H J, Ding Z Y, et al. A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ'-solvus temperature and superior high-temperature strength [J]. Scr. Mater., 2021, 199: 113826
doi: 10.1016/j.scriptamat.2021.113826
64 Guan Y, Liu Y C, Ma Z Q, et al. Investigation on γ' stability in CoNi-based superalloys during long-term aging at 900oC [J]. J. Alloys Compd., 2020, 842: 155891
doi: 10.1016/j.jallcom.2020.155891
65 Shi L, Yu J J, Cui C Y, et al. Microstructural stability and tensile properties of a Ti-containing single-crystal Co-Ni-Al-W-base alloy [J]. Mater. Sci. Eng., 2015, A646: 45
66 Fan Z D, Wang X G, Yang Y H, et al. Plastic deformation behaviors and mechanical properties of advanced single crystalline CoNi-base superalloys [J]. Mater. Sci. Eng., 2019, A748: 267
67 Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
68 Zhu J, Titus M S, Pollock T M. Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system [J]. J. Phase Equilib. Diffus., 2014, 35: 595
doi: 10.1007/s11669-014-0327-5
69 Chen T L, Guo C P, Li C R, et al. Experimental investigation of the phase relations in the Al-Co-Ti system [J]. J. Phase Equilib. Diffus., 2019, 40: 254
doi: 10.1007/s11669-019-00722-2
70 Zhou C Y, Guo C P, Li J B, et al. Experimental investigations of the Co-Ni-Ti system: Liquidus surface projection and isothermal section at 1373 K [J]. J. Alloys Compd., 2018, 754: 268
doi: 10.1016/j.jallcom.2018.04.253
71 Zhou C Y, Guo C P, Li C R, et al. Investigation on the intermetallic compound Co3Ta and high-temperature phase equilibria in the Co-Ni-Ta system [J]. Intermetallics, 2019, 108: 1
doi: 10.1016/j.intermet.2019.02.002
72 Yang S Y. Thermodynamic analysis and alloy design of Co-Al-W based superalloys [D]. Shenyang: Northeastern University, 2012
杨舒宇. Co-Al-W基高温合金热力学分析及合金设计 [D]. 沈阳: 东北大学, 2012
73 Ruan J J, Xu W W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ' region by machine learning and CALPHAD methods [J]. Acta Mater., 2020, 186: 425
doi: 10.1016/j.actamat.2020.01.004
74 Zhuang X L, Lu S, Li L F, et al. Microstructures and properties of a novel γ'-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method [J]. Mater. Sci. Eng., 2020, A780: 139219
75 Jiang C. First-principles study of Co3(Al, W) alloys using special quasi-random structures [J]. Scr. Mater., 2008, 59: 1075
doi: 10.1016/j.scriptamat.2008.07.021
76 Kobayashi S, Tsukamoto Y, Takasugi T, et al. Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique [J]. Intermetallics, 2009, 17: 1085
doi: 10.1016/j.intermet.2009.05.009
77 Chen M, Wang C Y. First-principle investigation of 3d transition metal elements in γ'-Co3(Al, W) [J]. J. Appl. Phys., 2010, 107: 093705
78 Xu W W, Han J J, Wang Z W, et al. Thermodynamic, structural and elastic properties of Co3 X (X = Ti, Ta, W, V, Al) compounds from first-principles calculations [J]. Intermetallics, 2013, 32: 303
doi: 10.1016/j.intermet.2012.08.022
79 Gao Q Z, Zhang X M, Ma Q S, et al. Accelerating design of novel Cobalt-based superalloys based on first-principles calculations [J]. J. Alloys Compd., 2022, 927: 167012
doi: 10.1016/j.jallcom.2022.167012
80 Zhao J C, Zheng X, Cahill D G. High-throughput diffusion multiples [J]. Mater. Today, 2005, 8: 28
81 Suzuki A, Morra M M, Larsen M. Cobalt-nickel superalloys, and related articles [P]. US Pat, 20110268989A1, 2010
82 Li W D, Li L F, Antonov S, et al. High-throughput exploration of alloying effects on the microstructural stability and properties of multi-component CoNi-base superalloys [J]. J. Alloys Compd., 2021, 881: 160618
doi: 10.1016/j.jallcom.2021.160618
83 Stewart C A, Suzuki A, Rhein R K, et al. Oxidation behavior across composition space relevant to Co-based γ/γ' alloys [J]. Metall. Mater. Trans., 2019, 50A: 5445
84 Fan L L, Li Y, Zhao X Y, et al. High-throughput preparation and characterization of early hot-corrosion behaviors of compositional gradient Al-Cr complex coatings on a novel Co-Al-W-based alloy [J]. Corros. Sci., 2021, 192: 109811
doi: 10.1016/j.corsci.2021.109811
85 Zhongguancun Material Testing Technology Alliance. T/CSTM 00120—2019 general rule for materials genome engineering data [S]. 2019
中关村材料试验技术联盟. T/CSTM 00120-2019 材料基因工程数据通则 [S]. 2019
86 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
87 Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ'-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
88 Lu S, Zou M, Zhang X R, et al. Data-driven “cross-component” design and optimization of γ'-strengthened Co-based superalloys [J]. Adv. Eng. Mater., 2023, 25: 2201257
doi: 10.1002/adem.v25.10
89 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
doi: 10.1016/j.matdes.2020.108996
90 Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Met-all. Mater. Trans., 2018, 49A: 4079
91 Lu S, Antonov S, Li L F, et al. Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress [J]. Acta Mater., 2020, 190: 16
doi: 10.1016/j.actamat.2020.03.015
92 Lu S, Luo Z E, Li L F, et al. Comparison of creep mechanisms between Co-Al-W- and CoNi-based single crystal superalloys at low temperature and high stresses [J]. Metall. Mater. Trans., 2023, 54A: 1597
93 Shi L, Yu J J, Cui C Y, et al. The creep deformation behavior of a single-crystal Co-Al-W-base superalloy at 900oC [J]. Mater. Sci. Eng., 2015, A635: 50
94 Lenz M, Eggeler Y M, Müller J, et al. Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy [J]. Acta Mater., 2019, 166: 597
doi: 10.1016/j.actamat.2018.12.053
95 Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
96 Titus M S. High temperature deformation mechanisms of L12-containing Co-based superalloys [D]. Santa Barbara: University of California, 2015
97 Titus M S, Rettberg L H, Pollock T M. High temperature creep of γ'-containing CoNi-based superalloys [A]. Superalloys 2016 [C]. Hoboken: Wiley, 2016: 141
98 Zhou H J, Li L F, Antonov S, et al. Sub/micro-structural evolution of a Co-Al-W-Ta-Ti single crystal superalloy during creep at 900oC and 420 MPa [J]. Mater. Sci. Eng., 2020, A772: 138791
99 Tetzlaff U, Mughrabi H. Enhancement of the high-temperature tensile creep strength of monocrystalline nickel-base superalloys by pre-rafting in compression [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 273
100 Chung D W, Ng D S, Dunand D C. Influence of γ'-raft orientation on creep resistance of monocrystalline Co-based superalloys [J]. Materialia, 2020, 12: 100678
doi: 10.1016/j.mtla.2020.100678
101 Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55: 1067
doi: 10.1016/j.actamat.2006.09.026
102 Lenz M, Wu M J, He J Y, et al. Atomic structure and chemical composition of planar fault structures in Co-base superalloys [A]. Superalloys 2000 [C]. Cham: Springer, 2020: 920
103 Li Q J, Li J, Shan Z W, et al. Strongly correlated breeding of high-speed dislocations [J]. Acta Mater., 2016, 119: 229
doi: 10.1016/j.actamat.2016.07.053
104 Lu S, Antonov S, Xue F, et al. Segregation-assisted phase transformation and anti-phase boundary formation during creep of a γ'-strengthened Co-based superalloy at high temperatures [J]. Acta Mater., 2021, 215: 117099
doi: 10.1016/j.actamat.2021.117099
105 Smith T M, Good B S, Gabb T P, et al. Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys [J]. Acta Mater., 2019, 172: 55
doi: 10.1016/j.actamat.2019.04.038
106 Lilensten L, Kürnsteiner P, Mianroodi J R, et al. Segregation of solutes at dislocations: A new alloy design parameter for advanced superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 41
107 Zhang Y, Li J S, Wang W Y, et al. When a defect is a pathway to improve stability: A case study of the L12 Co3TM superlattice intrinsic stacking fault [J]. J. Mater. Sci., 2019, 54: 13609
doi: 10.1007/s10853-019-03884-z
108 Wang W Y, Xue F, Zhang Y, et al. Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study [J]. Acta Mater., 2018, 145: 30
doi: 10.1016/j.actamat.2017.10.041
109 Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
110 Titus M S, Rhein R K, Wells P B, et al. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects [J]. Sci. Adv., 2016, 2: e1601796
doi: 10.1126/sciadv.1601796
111 Barba D, Smith T M, Miao J, et al. Segregation-assisted plasticity in Ni-based superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4173
112 Makineni S K, Kumar A, Lenz M, et al. On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy [J]. Acta Mater., 2018, 155: 362
doi: 10.1016/j.actamat.2018.05.074
113 He J Y, Zenk C H, Zhou X Y, et al. On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy [J]. Acta Mater., 2020, 184: 86
doi: 10.1016/j.actamat.2019.11.035
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[5] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[8] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[10] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[11] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[12] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[15] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
No Suggested Reading articles found!