Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1391-1399    DOI: 10.11900/0412.1961.2015.00099
Current Issue | Archive | Adv Search |
MICROSTRUCTURE ALONG THICKNESS DIRECTION OF FRICTION STIR WELDED TC4 TITANIUM ALLOY JOINT
Shude JI1(),Quan WEN1,Lin MA1,Jizhong LI2,Li ZHANG1
1 Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
Cite this article: 

Shude JI,Quan WEN,Lin MA,Jizhong LI,Li ZHANG. MICROSTRUCTURE ALONG THICKNESS DIRECTION OF FRICTION STIR WELDED TC4 TITANIUM ALLOY JOINT. Acta Metall Sin, 2015, 51(11): 1391-1399.

Download:  HTML  PDF(1769KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a solid state technology, friction stir welding (FSW) has been used to join titanium alloys for avoiding the fusion welding defects. So far, many previous studies have attempted to elucidate the microstructure characteristics and evolution during the FSW process of titanium alloy, but few are about the mechanism of microstructure transformation along the thickness direction of joint. For solving this problem, in this work, 2 mm thick TC4 titanium alloy is successfully welded by FSW. On the basis of numerical simulation, the effects of temperature distribution on the microstructure along the weld thickness direction and the tensile strength of welding joint were investigated. The results show that the peak temperatures of material close to weld surface exceed b phase transus temperature under the rotational speed of 300 r/min and the welding speed of 50 mm/min. With the increase of distance away from the weld surface, the peak temperature decreases. The peak temperature of weld bottom near the backing board is difficult to be higher than b phase transus temperature owing to quick heat radiation. The region, where the peak temperature is higher than b phase transus temperature, consists of primary a, lath-shape a and residual b phases. The size of lath-shape a inside the weld is larger than that near the weld surface. Primary a and b phases with smaller size are attained in the weld bottom owing to the dynamic recrystallization, and the distribution of b phase on primary a matrix is more homogeneous. When the rotational speed reaches 350 r/min, the area where the peak temperature is higher than b phase transus temperature becomes wider along the thickness direction, which makes the size and quantity of lath-shape a phase increase and then the lath-shape a clump appears. Lath-shape a phase with different orientations hinder the propagation of crack and be beneficial for the tensile strength of FSW joint.

Key words:  friction stir welding      TC4 titanium alloy      peak temperature      microstructure      tensile strength     
Fund: Supported by National Natural Science Foundation of China (No.51204111) and Natural Science Foundation of Liaoning Province (Nos.2013024004 and 2014024008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00099     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1391

Fig.1  Schematic of dimension of tensile specimen (unit: mm; RS—retreating side, AS—advancing side)
Fig.2  Mesh generation used in simulation
Fig.3  Relationship between temperature (T) and thermal properties of TC4 titanium alloy
Fig.4  Relationship between temperature and yield strength of TC4 titanium alloy
Fig.5  Schematic illustration of boundary conditions of scattering heat used in simulation
Fig.6  Simulated and NiCr-NiSi thermocouple temperature measurement of experimental thermal cycle curves of measurement poins during friction stir welding (FSW) for TC4 titanium alloy at rotational speed of 300 and 350 r/min (l—distance from weld center)
Fig.7  Cross section temperature distributions of TC4 titanium alloy weld joints under rotational speeds of 300 r/min (a) and 350 r/min (b)
Fig.8  Macrostructures (a, c) and cross section morphologies (b, d) of TC4 titanium alloy weld joints at rotational speeds of 300 r/min (a, b) and 350 r/min (c, d) (HAZ—heat affected zone, SZ—stir zone, BM—base metal, SAZ—shoulder affected zone)
Fig.9  SEM image of base material of TC4 titanium alloy
Fig.10  SEM images of TC4 titanium alloy weld joints with distances from weld surface d=0.25 mm (a), d=0.75 mm (b), d=1.25 mm (c) and d=1.75 mm (d) along thickness direction at rotational speed of 350 r/min
Fig.11  Schematic illustrations of microstructural evolution mechanism of TC4 titanium alloy weld joint

(a) initial stage (b) welding process (c) slow cooling stage (d) final stage

Fig.12  SEM images of TC4 titanium alloy weld joints with distances from weld surface d=0.25 mm (a), d=0.75 mm (b), d=1.25 mm (c) and d=1.75 mm (d) along thickness direction at rotational speed of 300 r/min
Fig.13  Fracture locations of TC4 titanium alloy joints under rotational speeds of 300 r/min (a) and 350 r/min (b)
Fig.14  SEM images of fracture morphology of TC4 titanium alloy weld joints under rotational speed of 300 r/min (a) and enlarged views of area 1 (b), area 2 (c) and area 3 (d) in Fig.14a
Fig.15  SEM images of fracture morphology of TC4 titanium alloy weld joints under rotational speed of 350 r/min (a) and enlarged views of area 1 (b), area 2 (c) and area 3 (d) in Fig.15a
[1] Luo L, Shen Y F, Li B, Hu W Y. Acta Metall Sin, 2013; 49: 996 (骆 蕾, 沈以赴, 李 博, 胡伟叶. 金属学报, 2013; 49: 996)
[2] Leng C Y, Zhou R, Zhang X, Lu D H, Liu H X. Acta Metall Sin, 2009; 45: 764 (冷崇燕, 周 荣, 张 旭, 卢德宏, 刘洪喜. 金属学报, 2009; 45: 764)
[3] Das D K, Trivedi S P. Mater Sci Eng, 2004; A367: 225
[4] Xiong Y M, Zhu S L, Wang F H. Acta Metall Sin, 2004; 40: 768 (熊玉明, 朱圣龙, 王福会. 金属学报, 2004; 40: 768)
[5] Esmaily M, Mortazavi S N, Todehfalah P, Rashidi M. Mater Des, 2013; 47: 143
[6] Zhang Y, Sato Y S, Kokawa H, Park S H C, Hirano S. Mater Sci Eng, 2008; A485: 448
[7] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[8] Threadgill P L, Leonard A J, Shercliff H R, Withers P J. Int Mater Rev, 2009; 54: 49
[9] Liu H J, Zhou L, Liu Q W. Mater Des, 2010; 31: 1650
[10] Zhou L, Liu H J, Liu P, Liu Q W. Scr Mater, 2009; 61: 596
[11] Wang W, Li Y, Wang Q J, Wang K S, Hai M N. Rare Met Mater Eng, 2014; 43: 1143 (王 文, 李 瑶, 王庆娟, 王快社, 海敏娜. 稀有金属材料与工程, 2014; 43: 1143)
[12] Zhou L, Liu H J, Liu Q W. Mater Des, 2010; 31: 2631
[13] Wang K S, Zhang X L, Shen Y, Xu K W. Rare Met Mater Eng, 2008; 37: 2045 (王快社, 张小龙, 沈 洋, 徐可为. 稀有金属材料与工程, 2008; 37: 2045)
[14] Li H K, Shi Q Y, Zhao H Y, Li T. Trans China Weld Inst, 2006; 27(11): 81 (李红克, 史清宇, 赵海燕, 李 亭. 焊接学报, 2006; 27(11): 81)
[15] He W, Du X P, Ma H Z, Hui X Y, Sun X F. Phys?Testing Chem? Anal?(Phys?Anal), 2014; 50A: 461 (何 伟, 杜小平, 马红征, 惠晓原, 孙晓峰. 理化检验-物理分册, 2014; 50A: 461)
[16] Wang T, Bai X F, Wang S M, Zhu B, Xia J H. J?Xi'an? Univ?Arts?Sci (Nat?Sci?Ed), 2013; 16: 80 (王 涛, 白新房, 王松茂, 朱 波, 夏金华. 西安文理学院学报(自然科学版), 2013; 16: 80)
[17] Wang H S. Rare Met Mater Eng, 1989; 3: 47 (王华森. 稀有金属材料与工程, 1989; 3: 47)
[18] Zhang X Y,Zhao Y Q. Titanium Alloy and Application. Beijing: Chemical Industry Press, 2005: 1 (张喜燕,赵永庆. 钛合金及应用. 北京: 化学工业出版社, 2005: 1)
[19] Chen S K, Tian Y W, Chang L, Miao Z, Xia J H. Rare Met Mater Eng, 2009; 38: 1916 (陈绍楷, 田弋纬, 常 璐, 苗 壮, 夏金华. 稀有金属材料与工程, 2009; 38: 1916)
[20] Homporová P, Poletti C, Stockinger M, Warchomicka F. J Laser Appl, 2012; 27: 1321
[21] Robert P. PhD Dissertation, Lulea University of Technology, 2002
[22] Zhang Z,Wang Q J,Mo W. Titanium Metallurgy and Heat Treatment. Beijing: Metallurgical Industry Press, 2009: 262 (张 翥,王群骄,莫 畏. 钛的金属学和热处理. 北京: 冶金工业出版社, 2009: 262)
[23] Qazi J I, Senkov O N, Rahim J, Genc A, Froes F H. Metall Mater Trans, 2001; 32A: 2453
[24] Xu W F, Liu J H, Luan G H, Dong C L. Acta Metall Sin, 2009; 45: 490 (徐韦锋, 刘金合, 栾国红, 董春林. 金属学报, 2009; 45: 490)
[25] Kitamura K, Fujii H, Iwata Y, Sun Y S, Morisada Y. Mater Des, 2013; 46: 348
[26] Wang D, Liu J, Xiao B L, Ma Z Y. Acta Metall Sin, 2010; 46: 589 (王 东, 刘 杰, 肖伯律, 马宗义. 金属学报, 2010; 46: 589)
[27] Kang J, Luan G H. Acta Metall Sin, 2011; 47: 224 (康 举, 栾国红. 金属学报, 2011; 47: 224)
[28] Sharma C, Dwivedi D K, Kumar P. Mater Des, 2012; 36: 379
[29] Liu H J, Hou J C, Guo H. Mater Des, 2013; 50: 872
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!