Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1384-1390    DOI: 10.11900/0412.1961.2015.00072
Current Issue | Archive | Adv Search |
STUDY ON THERMODYNAMIC PROPERTIES AND KINETICS FRAGILITY OF GexSe90-xSb10 CHALCOGENIDE GLASSES
Jiaojiao LI,Zengyun JIAN,Man ZHU,Junfeng XU,Fang'e CHANG,Min XIANG
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021
Cite this article: 

Jiaojiao LI,Zengyun JIAN,Man ZHU,Junfeng XU,Fang'e CHANG,Min XIANG. STUDY ON THERMODYNAMIC PROPERTIES AND KINETICS FRAGILITY OF GexSe90-xSb10 CHALCOGENIDE GLASSES. Acta Metall Sin, 2015, 51(11): 1384-1390.

Download:  HTML  PDF(905KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The properties of the glasses and crystals of GexSe90-xSb10 (x=20, 23, 25, 30) prepared with melt quenching method have been analyzed by DSC. The glass transition temperature (Tg) of GexSe90-xSb10 glasses at different heating rates, the specific heat capacity and the entropy of the glasses and the crystals have been obtained. And on this basis, the kinetics ideal glass transition temperature (T0), the thermodynamics ideal glass transition temperature (TK) (Kauzmann temperature) and the kinetic fragility index (m) of GexSe90-xSb10 glasses have been determined. It is found that Tg, the specific heat capacity and the entropy increase with increasing the heating rate. Tg and T0 first increase and then decrease with increasing the Ge content, while TK increases linearly with the increase of Ge content. The m, Tg/TK, Tg/Tm and Tg/T0 are estimated to be 20.7~23.2, 1.183~1.352, 0.678~0.742 and 1.006~1.019, respectively. For each GexSe90-xSb10 glass in this work, its m is smaller than 30 and Tg/TK is larger than 1.1, which means that the GexSe90-xSb10 glass should be considered as a strong melt. The value of Tg/Tm is larger than 2/3, which indicates that amorphous GexSe90-xSb10 can be formed easily.

Key words:  GexSe90-xSb10 glass      glass transition temperature      specific heat capacity      kinetic fragility     
Fund: Supported by National Basic Research Program of China (No.2011CB610403), National Natural Science Foundation of China (Nos.51371137, 51071115, 51171136, 51301125 and 51401156), Natural Science Basic Research Plan in Shaanxi Province of China (Nos.2012JM6010 and 2014JM6225) and Scientific Research Program Funded by Shaanxi Provincial Education Department (No.2013JK0907)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00072     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1384

Fig.1  XRD spectra of GexSe90-xSb10 (x=20, 23, 25, 30) glasses
Fig.2  DSC curves of GexSe90-xSb10 chalcogenide glasses with different heating rates (Tg—glass transition temperature)

(a) x=20 (b) x=23 (c) x=25 (d) x=30

Fig.3  Heating rate (Rh) as a function of Tg, and the Vogel-Fulcher fitting curves for GexSe90-xSb10 chalcogenide glasses
x a b c d e f
Jmol-1K-1 Jmol-1K-2 Jmol-1K-3 Jmol-1K-1 Jmol-1K-2 Jmol-1K-3
20 391.39 -1.378 0.00147 239.97 -1.097 0.00134
23 1000.96 -3.612 0.00357 270.83 -1.254 0.00162
25 800.50 -2.826 0.00279 429.24 -1.518 0.00154
30 1886.87 -6.169 0.00543 605.75 -2.529 0.00281
  
Fig.4  Specific heat capacity (cp) for GexSe90-xSb10 samples as a function of temperature (T)

(a) x=20 (b) x=23 (c) x=25 (d) x=30

Fig.5  Differences in entropy between the undercooled melt and crystal of Ge20Se70Sb10
x Tg / K TK / K Tm / K Tg / Tm Tg / T0 Tg / TK m
20 503.81 376.89 743.06 0.678 1.007 1.337 22.5
23 522.89 401.68 760.67 0.687 1.016 1.302 20.7
25 565.99 418.77 762.37 0.742 1.006 1.352 23.2
30 559.26 473.41 768.70 0.728 1.019 1.183 21.3
Table 2  Characteristic temperature and kinetic fragility index of GexSe90-xSb10 glasses
[1] Angell C A. Science, 1995; 267: 1924
[2] Fontana G D, Battezzati L. Acta Mater, 2013; 61: 2260
[3] Mukherjee S, Schroers J, Johnson W L, Rhim W K. Phys Rev Lett, 2005; 94: 245501
[4] Turnbull D. Contemp Phys, 1969; 10: 473
[5] Kauzmann W. Chem Rev, 1948; 43: 219
[6] Jian Z Y, Zhou J, Chang F E, Jie W Q. Acta Metall Sin, 1999; 45: 1146 (坚增运, 周 晶, 常芳娥, 介万奇. 金属学报, 1999; 45: 1146)
[7] Debenedetti P G, Stillinger F H. Nature, 2001; 410: 259
[8] Gibson J M. Science, 2009; 326: 942
[9] Angell C A. J Non-Cryst Solids, 1985; 73: 1
[10] Cai A H, Ding D W, Xiong X, Liu Y, An W K, Zhou G J, Luo Y, Li T L, Li X S. Mater Des, 2014; 63: 233
[11] Gallino I, Schroers J, Busch R. J Appl Phys, 2010; 108: 063501
[12] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J,Bendnarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z. Acta Mater, 2008; 56: 1785
[13] Battezzati L, Castellero A, Rizzi P. J Non-Cryst Solids, 2007; 353: 3318
[14] Battezzati L. Rev Adv Mater Sci, 2008; 18: 184
[15] Glade S C, Busch R, Lee D S, Johnson W L, Wunderlich R K, Fecht H J. J Appl Phys, 2000; 87: 7242
[16] Evenson Z, Busch R. Acta Mater, 2011; 59: 4404
[17] Jiang Q, Xu X Y, Li J C. Acta Metall Sin, 1997; 33: 6 (蒋 青, 徐晓亚, 李建忱. 金属学报, 1997; 33: 6)
[18] Legg B A, Schroers J, Busch R. Acta Mater, 2007; 55: 1109
[19] Jia R, Bian X F, Wang Y Y. Chin Sci Bull, 2011; 56: 3912
[20] Lu Z P, Li Y, Liu C T. J Appl Phys, 2003; 93: 286
[21] Senkov O N. Phys Rev, 2007; 76B: 104202
[22] Jiang Q K, Zhang G Q, Yang L, Wang X D, Saksl K, Franz H,Wunderich R, Fecht H, Jiang J Z. Acta Mater, 2007; 55: 4409
[23] Fiore G, Battezzati L. J Alloys Compd, 2009; 483: 54
[24] Fan G J, L?ffler J F, Wunderlich R K, Fecht H J. Acta Mater, 2004; 52: 667
[25] Zhu M, Li J J, Yao L J, Jian Z Y, Chang F E, Yang G C. Thermochim Acta, 2013; 565: 132
[26] Gallino I, Gross O, Fontana G D, Evenson Z, Busch R. J Alloys Compd , 2014; 615: S35
[27] Zhang X H, Guimond Y, Bellec Y. J Non-Cryst Solids, 2003; 326: 519
[28] Varshneya A K, Mauro D J. J Non-Cryst Solids, 2007; 353: 1291
[29] Vázquez J, Barreda D G, López-Alemany P L, Villares P, Jiménez-Garay R. J Alloys Compd, 2005; 390: 94
[30] Lee J H, Lee W H, Park J K, Yi J H, Shin S Y, Park B J, So B, Heo J, Choi J H, Kim H J, Choi Y G. J Non-Cryst Solids, doi:
[31] Soltana A S, Abu-Sehly A A, Joraid A A, Alamri S N. Thermochim Acta, 2013; 574: 73
[32] Tlchy L, Tichá H. J Non-Cryst Solids, 1995; 189: 141
[33] Guo H, Tao H Z, Gong Y Q, Zhao X J. J Non-Cryst Solids, 2008; 354: 1159
[34] Dinsdale A T. Calphad, 1991; 15: 317
[35] Angell C A. MRS Bull, 2008; 33: 544
[36] Martinez L M, Angell C A. Nature, 2001; 410: 663
[37] Ito K, Moynihan C T, Angell C A. Nature, 1999; 398: 492
[38] Angell C A. J Non-Cryst Solids, 1988; 102: 205
[39] Kissinger H E. Anal Chem, 1957; 29: 1702
[40] Rabinal M K, Sangunni K S, Gopal E S R. J Non-Cryst Solids, 1995; 188: 98
[41] Zhang C Z. PhD Dissertation, Shandong University, Jinan, 2011 (张春芝. 山东大学博士学位论文, 济南, 2011)
[42] Guo Y F, Yavari A R, Zhang T. J Alloys Compd, 2012; 536: 91
[43] Angell C A. Physica, 1997; 107D: 122
[44] Sreeram A N, Varshneya A K, Swiler D R. J Non-Cryst Solids, 1991; 128: 294
[1] Tingting JIA,Zengyun JIAN,Junfeng XU,Man ZHU,Fang'e CHANG. CHARACTERISTIC TEMPERATURE AND PERFOR-MANCE OF THE Ge30Se70 CHALCOGENIDE GLASS[J]. 金属学报, 2016, 52(6): 755-760.
[2] JIANG Qing;XU Xiaoya;ZHAO Ming (Jilin University of Technoloasl; Changchun 130025). RELATIONSHIP BETWEEN VOGELFULCHER LAW AND GLASS TRANSITION TEMPERATURE[J]. 金属学报, 1997, 33(7): 763-768.
[3] SHEN Tao; WANG Jingtang Institute of Metal Research Academia Sinica; Laboratory of Rapidly Solidified Non-Equilibrium Alloys; Shenyang professor. VARIATIONAL CALCULATION OF THERMODYNAMIC PROPERTIES OF SUPERCOOLED LIQUID METALS[J]. 金属学报, 1990, 26(3): 119-125.
No Suggested Reading articles found!