Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 67-76    DOI: 10.11900/0412.1961.2014.00281
Current Issue | Archive | Adv Search |
EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE
SUN Wen1,2, QIN Xuezhi2(), GUO Jianting2, LOU Langhong2, ZHOU Lanzhang2
1 University of Science and Technology of China, Hefei 230022
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

SUN Wen, QIN Xuezhi, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE. Acta Metall Sin, 2015, 51(1): 67-76.

Download:  HTML  PDF(18347KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-based superalloys are widely used as microstructural components of modern turbine engines due to its good high temperature strength, good fatigue and creep property and excellent hot-corrosion resistance. In order to increase their high temperature strength, more and more refractory elements, such as W and Mo, are added into these alloys while Cr content gradually decreases. During long-term aging, these alloys generally experience various microstructural changes, including coarsening of g' phase coarsening, formation of a continuous grain boundary (GB) carbide network, precipitation topologically close-packed (TCP) phase, and degeneration of MC carbide. However, there is limited available data about the effect of (W+Mo)/Cr ratios on the microstructural evolution of Ni-based superalloys. In this work, the cast Ni-based superalloys with different (W+Mo)/Cr ratios (mass ratios) are fabricated by vacuum induction furnace. After standard heat treated (1110 ℃, 4.5 h, air cooling+750 ℃, 10.5 h, air cooling), they are thermally exposed at 850 ℃ for different times. The stress-rupture tests are operated under the condition of 800 ℃, 294 MPa. Effects of (W+Mo)/Cr ratios on the microstructure evolutions and mechanical properties are investigated by the combination of OM, SEM, TEM and stress-rupture tests. The experiment results show that the (W+Mo)/Cr ratio has no obvious influence on the standard heat treated microstructure, which is mainly composed of g matrix, g' phase, MC carbide and secondary carbides distributing at grain boundaries. During long-term thermal exposure, the microstructure evolutions occur by g' phase coarsening, TCP phases formation, MC degeneration and grain boundary coarsening. The g' phase coarsening behavior is not affected obviously by the (W+Mo)/Cr ratio. However, the amount of TCP phases decreases significantly with decreasing of (W+Mo)/Cr ratio and the type of TCP phases transforms from m phase to coexist of m and s phases when (W+Mo)/Cr ratio decreases from 0.55 to 0.37. There are no TCP phases observed in the sample with (W+Mo)/Cr ratio of 0.22. The thermal stability of MC carbide is reduced obviously and the grain boundaries coarsen more severely by the decrease of (W+Mo)/Cr ratio. The degradation of stress-rupture property is attributed to the coarsening of g' phase and grain boundaries and the formation of TCP phases. Combined with the effect of (W+Mo)/Cr ratio on the solid solution strengthening, microstructure evolution and stress-rupture property, it can be concluded that the optimum stress-rupture property can be obtained when the (W+Mo)/Cr ratio is about 0.37.

Key words:  Ni-based superalloy      (W+Mo)/Cr ratio      long-term aging      microstructural evolution      mechanical property     
ZTFLH:  TA211.8  
Fund: Supported by National Natural Science Foundation of China (No.51001101) and High Technology Research and Development Program of China (No.2012AA03A501)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00281     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/67

Sample C Cr Al Ti Nb W Mo Fe Ni (W+Mo)/Cr Nv
A1 0.10 11.54 1.82 4.54 0.13 7.10 5.21 14.6 Bal. 1.07 2.34
A2 0.10 15.39 1.82 3.49 0.10 4.94 3.58 14.8 Bal. 0.55 2.32
A3 0.11 17.55 1.95 3.49 0.11 3.78 2.77 14.9 Bal. 0.37 2.41
A4 0.10 19.76 1.86 3.44 0.11 2.47 1.78 15.0 Bal. 0.22 2.44
Table 1  Chemical compositions of Ni-based superalloys
Fig.1  Typical microstructures of sample A1 after heat treatment

(a) OM image
(b) SEM image of g' phase
(c) SEM image of grain boundary

Fig.2  SEM images of g' phase in different alloy samples after aged at 850 ℃ for different times
Fig.3  Microstructures of A1 (a), A2 (b), A3 (c) and A4 (d) after aged at 850 ℃ for 0.5×103 h (The insets corresponds to the TEM images and SAED patterns)
Fig.4  Microstructures of A1 (a), A2 (b), A3 (c) and A4 (d) after aged at 850 ℃ for 1×104 h
Fig.5  Morphologies of MC degeneration after thermal exposure at 850 ℃ for 1×103 h in A1 (a), A2 (b), A3 (c) and A4 (d)
Fig.6  Morphologies of MC degeneration after thermal exposure at 850 ℃ for 1×104 h in A1 (a), A2 (b), A3 (c) and A4 (d)
Fig.7  Degeneration degree (D) of primary MC changes with aging time t
Sample Ti Nb Mo W Cr Ni Nb/Ti (Nb+Ti)/(W+Mo)
A1 47.45 4.39 15.50 28.60 1.53 2.50 0.09 1.18
A2 43.00 4.70 13.60 31.10 2.60 5.00 0.10 1.06
A3 50.10 5.00 12.95 27.70 1.60 2.69 0.10 1.36
A4 56.20 6.55 10.10 24.26 1.30 1.65 0.12 1.83
Table 2  Compositions and thermal stability parameters of MC in alloys
Fig.8  Morphologies of grain boundaries after thermal exposure at 850 ℃ for 1×104 h in A1 (a), A2 (b), A3 (c) and A4 (d)
Fig.9  Effect of (W+Mo)/Cr ratio on stress-rupture life of alloys after different exposure time
Fig.10  Cross section microstructures of samples A1 (a), A2 (b), A3 (c) and A4 (d) after thermal exposure at 850 ℃ for 1×104 h under stress-rupture test at 800 ℃, 294 MPa (GB—grain boundary)
[1] Guo J T. Materials Science and Engineering for Superalloys. Vol.1Beijing,: Science Press, 2008: 39
(郭建亭.高温合金材料学(上册). 北京: 科学出版社, 2008: 39)
[2] Cai Y L, Zheng Y R. Acta Metall Sin, 1982; 18: 30
(蔡榆林, 郑运荣. 金属学报, 1982; 18: 30)
[3] Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, New York: Wiley, 1987: 97
[4] Pollock T M. Mater Sci Eng, 1999; B32: 255
[5] Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[6] Rae C M F, Karunaratne M S A, Small C J, Broomfiels C N, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[7] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[8] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[9] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[10] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[11] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[12] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[13] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[14] Wanger C Z. Elektrochem, 1961; 65: 581
[15] Swalin R A, Martin A. J Met, 1956; 206: 567
[16] Van Der Molten F H, Oblak J M, Kriege O H. Metall Trans, 1971; 2: 1627
[17] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[18] Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A533: 14
[19] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. Mater Sci Eng, 2008; A485: 74
[20] Sun W, Qin X Z, Guo Y A, Guo J T, Zhou L Z, Lou L H. Acta Metall Sin, 2014; 50: 744
(孙 文, 秦学智, 郭永安, 郭建亭, 周兰章, 楼琅洪.金属学报, 2014; 50: 744)
[21] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361:191
[22] Chen Q Z, Knowles D M. Metall Trans, 2002; 33A: 1319
[23] Pessah M, Caron P, Khan T. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992,567
[24] Pessah-Simonetti M, Caron P, Khan T. Mater Sci Eng, 1998; A254: 1
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!