Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 77-84    DOI: 10.11900/0412.1961.2014.00364
Current Issue | Archive | Adv Search |
INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY
LIN Huiwen, LIU Jide(), ZHOU Yizhou, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LIN Huiwen, LIU Jide, ZHOU Yizhou, JIN Tao, SUN Xiaofeng. INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2015, 51(1): 77-84.

Download:  HTML  PDF(11041KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-based single crystal superalloys are considered to be the major materials for advanced areo-engine blades. In order to improve the high temperature properties of Ni-based single crystal superalloys, many refractory elements are introduced into this kind of alloys. Recently Pt has been suggested to be the alloying elements of advanced Ni-based single crystal superalloys. However, there are no researches for the effects of Pt on creep rupture properties of advanced single crystal superalloys. In this work, the influence of Pt element on the creep rupture properties of a Re-containing single crystal superalloy was investigated. The high-temperature creep rupture properties of the Pt-containing Ni-based single crystal superalloy at 1100 ℃, 180 MPa and 1000 ℃, 310 MPa were investigated. The deformation microstructure and the morphology of dislocations were studied by SEM and TEM. The results show that the creep rupture life of Pt-containing superalloy decrease slightly at 1100 ℃, 180 MPa and decreased obviously at 1000 ℃, 310 MPa. The fracture models of different alloys are all ductile fracture, and many irregular microviods and microcracks can be observed in the fracture surfaces. After high temperature creep deformation, regular dislocation networks formed at the g/g' interfaces. The differences of creep rupture properties among those alloys are that Pt element may promote the formation of TCP phase, and the interface between the TCP phase and g matrix may be favorite sites of the initiation of microvoids and microcracks.

Key words:  Pt      Ni-based single crystal superalloy      creep rupture property     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (No.U1037601) and National Basic Research Program of China (No.2010CB631206)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00364     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/77

Alloy Co Cr+W+Mo Al Ta Re Pt Ni
0Pt 12.0 13.0 6.0 8.0 5.0 - Bal.
1.5Pt 12.0 13.0 6.0 8.0 5.0 1.5 Bal.
3Pt 12.0 13.0 6.0 8.0 5.0 3.0 Bal.
Table 1  Nominal compositions of experimental alloys
Fig.1  Schematic of creep rupture test sample (unit: mm)
Alloy 1100 ℃, 180 MPa 1000 ℃, 310 MPa
t / h d / % t / h d / %
0Pt 65.58 17.8 97.19 28.3
1.5Pt 63.28 18.6 82.50 23.4
3Pt 56.74 19.4 77.98 19.1
Table 2  Rupture life (t) and elongation (d) of different alloys
Fig.2  Low (a, c, e) and high (b, d, f) magnified SEM images of fracture morphologies of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1100 ℃ and 180 MPa
Fig.3  Low (a, c, e) and high (b, d, f) magnified SEM images of fracture morphologies of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1000 ℃ and 310 MPa
Fig.4  Low (a, c, e) and high (b, d, f) magnified SEM images of longitudinal microstructures of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1100 ℃ and 180 MPa
Fig.5  Low (a, c, e) and high (b, d, f) magnified SEM images of longitudinal microstructures of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1000 ℃ and 310 MPa
Fig.6  TEM images of dislocation networks configuration in 0Pt (a), 1.5Pt (b) and 3Pt (c) alloys after rupture test at 1100 ℃ and 180 MPa
Fig.7  TEM images of dislocation networks configuration in 0Pt (a), 1.5Pt (b) and 3Pt (c) alloys after rupture test at 1000 ℃ and 310 MPa (Arrows show the dislocations)
[1] Kearsey R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 801
[2] Reed R C. Superalloys:Fundamentals and Applications. Cambride: Cambridge University Press, 2006: 147
[3] Cetel A D, Duhl D N. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 235
[4] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissmger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: Minerals, Metals & Materials Soc, 1996: 27
[5] Erickson G L. In: Kissmger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: Minerals, Metals & Materials Soc, 1996: 35
[6] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 35
[7] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[8] Yeh A C, Tin S. Metall Mater Trans, 2006; 37A: 2621
[9] Neumeier S, Pyczak F, Goeken M. In: Reed R C, Green K A, Caron P, Grabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[10] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[11] O'hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996
[12] Ofori A P, Rossouw C J, Humphreys C J. Acta Mater, 2005; 53: 97
[13] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[14] Tin S, Yeh A C, Ofori A P, Reed R C, Babu S S, Miller M K. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 735
[15] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 787
[16] Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scr Mater, 2004; 51: 327
[17] Murakami H, Honma T, Koizumi Y, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 747
[18] Van Sluytman J S, La Fontaine A, Cairney J M, Pollock T M. Acta Mater, 2010; 58: 1952
[19] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[20] Murakami H, Koizumi Y, Yokokawa T, Yamabe M Y, Yamagata T, Harada H. Mater Sci Eng, 1998; A250: 109
[21] Van Sluytman J S, Suzuki A, Bolcavage A, Helmink R C, Ballard D L, Pollock T M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S eds., Superalloys 2008, Warrendale: TMS, 2008: 499
[22] Heidloff A J, Van Sluytman J S, Pollock T M, Gleeson B. Metall Mater Trans, 2009; 40A: 1529
[23] Lin H W, Zhou Y Z, Zhang X, Jin T, Sun X F. Acta Metall Sin, 2013; 49: 1567
(林惠文, 周亦胄, 张 炫, 金 涛, 孙晓峰. 金属学报, 2013; 49: 1567)
[24] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
[25] Lin H W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013
(林慧文. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[5] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[8] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[9] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[10] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[11] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[12] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[13] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[14] SUN Xiaofeng, SONG Wei, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. 金属学报, 2021, 57(11): 1471-1483.
[15] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
No Suggested Reading articles found!