|
|
MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD |
SONG Kan, ZHANG Jun, JIA Xiaojiao, SU Haijun, LIU Lin, FU Hengzhi |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 |
|
Cite this article:
SONG Kan ZHANG Jun JIA Xiaojiao SU Haijun LIU Lin FU Hengzhi. MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD. Acta Metall Sin, 2012, 48(2): 220-226.
|
Abstract Due to the excellent high temperature mechanical properties, Al2O3/YAG/ZrO2 ternary eutectic in situ composite is considered to be a promising candidate for the material, replacement for nickel based superalloy, of new generation aero space engine turbine blade. The directionally solidified Al2O3/YAG/ZrO2 hypereutectic ceramics are prepared with recently developed laser floating zone melting (LFZM) apparatus. Full eutectic lamellar microstructure, free of primary phase, was obtained with hypereutectic composition. The formation of solid/liquid interface morphology was analyzed in detail. The microstructure texture tendency was explained by combination with interface morphology. The experimental result indicates that, just as the prediction of JH model, average spacing of hypereutectic (λav) agrees with the inverse–square–root dependence on solidification rate (V ) according to λavV 0.5=14.7 μm1.5·s−0.5. In lower solidification rate, the lamellar spacing of hypereutectic is higher than that of eutectic composition, but the situation reverses in higher rate. The main reason of such phenomenon is that the addition of ZrO2 effects the thermal and solute transformation in the melt. The influence of transformation condition on lamellar spacing was analyzed synthetically by using classical irregular growth model. The formation mechanism of banded microstructure, often observed in laser zone melted solidification processing, was also discussed.
|
Received: 20 September 2011
|
Fund: Supported by National Natural Science Foundation of China (Nos.51002122 and 50772090), Natural Science Foundation of Shaanxi Province (No.2010JQ6005), Aeronautical Science Foundation of China (No.2010ZF53064), NPU Foundation for Fundamental Research (No.NPU–FFR–G9KY1016), New People and New Directions Foundation of School of Materials Science and Engineering in NPU (No.09XE0104–5), Research Fund of the State Key Laboratory of Solidification Processing in NPU (No.76–QP–2011) and Programme of Introducing Talents of Discipline to Universities (No.B08040) |
[1] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. Nature, 1997; 389: 49[2] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. J Mater Sci, 1998: 1217[3] Su H J, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 457(苏海军, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 457)[4] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. Mater Sci Eng, 2008; A479: 380[5] Fritsch M, Klemm H. J Eur Ceram Soc, 2008; 28: 2353[6] Fritsch M, Klemm H, Herrmann M, Schenk B. J Eur Ceram Soc, 2006; 26: 3557[7] Ochiai S, Ueda T, Sato K, Hojo M, Waku Y, Nakagawa N, Sakata S, Mitani A, Takahashi T. Compos Sci Technol, 2001; 61: 2117[8] Lee J H, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon D H, Waku Y. J Cryst Growth, 2001; 231: 179[9] Larrea A, Orera V M, Merino R I, Pe˜na J I. J Eur Ceram Soc, 2005; 25: 1419[10] Oliete P B, Pe˜na J I, Larrea A, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. Adv Mater, 2007; 19: 2313[11] Calderon–Moreno J M, Yoshimura M. J Eur Ceram Soc, 2005; 25: 1365[12] Pe˜na J I, Larsson M, Merino R I, Francisco I D, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. J Eur Ceram Soc, 2006; 26: 3113[13] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. J Cryst Growth, 2007; 307: 448[14] Ester F J, Larrea A, Merino R I. J Eur Ceram Soc, 2011; 31: 1257[15] Kurz W, Fisher D J. Int Met Rev, 1979; (5–6): 177[16] Lakiza S M, Lopato L M. J Am Ceram Soc, 1997; 80: 893[17] Echigoya J, Takabayashi Y, Sasaki K. Trans Jpn Inst Met, 1986; 27: 102[18] Jackson K A, Hunt J D. Aime Met Soc Trans, 1966; 236: 1129[19] Llorca J, Orera V M. Prog Mater Sci, 2006; 51: 711[20] Flood S C, Hunt J D. J Mater Sci, 1981; 15: 287[21] Merino R I, Pe N A J I, Larrea A, de la Fuente G F, Orera V M. Recent Res Devel Mater Sci, 2003; 4: 1[22] Golubovi´c A, Nikoli´c S, Gaji´c R, Duri´c S, Valˇci´c A. J Serb Chem Soc, 2005; 70: 87[23] Calderon–Moreno J M, Yoshimura M. Mater Sci Eng, 2004; A375–377: 1250[24] Magnin P, Kurz W. Acta Metall, 1987; 35: 1119[25] Liu L, Huang T, Qu M, Liu G, Zhang J, Fu H. J Mater Process Technol, 2010; 210: 159[26] Oliete P B, Pe˜na J I. J Cryst Growth, 2007; 304: 514[27] Sola D, Ester F J, Oliete P B, Pe˜na J I. J Eur Ceram Soc, 2011; 31: 1211[28] Saitou M. J Appl Phys, 1997; 12: 6343[29] Uhlmann D R, Chalmers B, Jackson K A. J Appl Phys, 1964; 10: 2986[30] Winegard W C, Majka S, Thall B M, Chalmers B. Can J Chem, 1951; 29: 320 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|