Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 220-226    DOI: 10.3724/SP.J.1037.2011.00594
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD
SONG Kan, ZHANG Jun, JIA Xiaojiao, SU Haijun, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

SONG Kan ZHANG Jun JIA Xiaojiao SU Haijun LIU Lin FU Hengzhi. MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD. Acta Metall Sin, 2012, 48(2): 220-226.

Download:  PDF(1059KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Due to the excellent high temperature mechanical properties, Al2O3/YAG/ZrO2 ternary eutectic in situ composite is considered to be a promising candidate for the material, replacement for nickel based superalloy, of new generation aero space engine turbine blade. The directionally solidified Al2O3/YAG/ZrO2 hypereutectic ceramics are prepared with recently developed laser floating zone melting (LFZM) apparatus. Full eutectic lamellar microstructure, free of primary phase, was obtained with hypereutectic composition. The formation of solid/liquid interface morphology was analyzed in detail. The microstructure texture tendency was explained by combination with interface morphology. The experimental result indicates that, just as the prediction of JH model, average spacing of hypereutectic (λav) agrees with the inverse–square–root dependence on solidification rate (V ) according to λavV 0.5=14.7 μm1.5·s−0.5. In lower solidification rate, the lamellar spacing of hypereutectic is higher than that of eutectic composition, but the situation reverses in higher rate. The main reason of such phenomenon is that the addition of ZrO2 effects the thermal and solute transformation in the melt. The influence of transformation condition on lamellar spacing was analyzed synthetically by using classical irregular growth model. The formation mechanism of banded microstructure, often observed in laser zone melted solidification processing, was also discussed.
Key words:  Al2O3/YAG/ZrO2       hypereutectic      solid/liquid interface      microstructure     
Received:  20 September 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.51002122 and 50772090), Natural Science Foundation of Shaanxi Province (No.2010JQ6005), Aeronautical Science Foundation of China (No.2010ZF53064), NPU Foundation for Fundamental Research (No.NPU–FFR–G9KY1016), New People and New Directions Foundation of School of Materials Science and Engineering in NPU (No.09XE0104–5), Research Fund of the State Key Laboratory of Solidification Processing in NPU (No.76–QP–2011) and Programme of Introducing Talents of Discipline to Universities (No.B08040)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00594     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/220

[1] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. Nature, 1997; 389: 49

[2] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. J Mater Sci, 1998: 1217

[3] Su H J, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 457

(苏海军, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 457)

[4] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. Mater Sci Eng, 2008; A479: 380

[5] Fritsch M, Klemm H. J Eur Ceram Soc, 2008; 28: 2353

[6] Fritsch M, Klemm H, Herrmann M, Schenk B. J Eur Ceram Soc, 2006; 26: 3557

[7] Ochiai S, Ueda T, Sato K, Hojo M, Waku Y, Nakagawa N, Sakata S, Mitani A, Takahashi T. Compos Sci Technol, 2001; 61: 2117

[8] Lee J H, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon D H, Waku Y. J Cryst Growth, 2001; 231: 179

[9] Larrea A, Orera V M, Merino R I, Pe˜na J I. J Eur Ceram Soc, 2005; 25: 1419

[10] Oliete P B, Pe˜na J I, Larrea A, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. Adv Mater, 2007; 19: 2313

[11] Calderon–Moreno J M, Yoshimura M. J Eur Ceram Soc, 2005; 25: 1365

[12] Pe˜na J I, Larsson M, Merino R I, Francisco I D, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. J Eur Ceram Soc, 2006; 26: 3113

[13] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. J Cryst Growth, 2007; 307: 448

[14] Ester F J, Larrea A, Merino R I. J Eur Ceram Soc, 2011; 31: 1257

[15] Kurz W, Fisher D J. Int Met Rev, 1979; (5–6): 177

[16] Lakiza S M, Lopato L M. J Am Ceram Soc, 1997; 80: 893

[17] Echigoya J, Takabayashi Y, Sasaki K. Trans Jpn Inst Met, 1986; 27: 102

[18] Jackson K A, Hunt J D. Aime Met Soc Trans, 1966; 236: 1129

[19] Llorca J, Orera V M. Prog Mater Sci, 2006; 51: 711

[20] Flood S C, Hunt J D. J Mater Sci, 1981; 15: 287

[21] Merino R I, Pe N A J I, Larrea A, de la Fuente G F, Orera V M. Recent Res Devel Mater Sci, 2003; 4: 1

[22] Golubovi´c A, Nikoli´c S, Gaji´c R, Duri´c S, Valˇci´c A. J Serb Chem Soc, 2005; 70: 87

[23] Calderon–Moreno J M, Yoshimura M. Mater Sci Eng, 2004; A375–377: 1250

[24] Magnin P, Kurz W. Acta Metall, 1987; 35: 1119

[25] Liu L, Huang T, Qu M, Liu G, Zhang J, Fu H. J Mater Process Technol, 2010; 210: 159

[26] Oliete P B, Pe˜na J I. J Cryst Growth, 2007; 304: 514

[27] Sola D, Ester F J, Oliete P B, Pe˜na J I. J Eur Ceram Soc, 2011; 31: 1211

[28] Saitou M. J Appl Phys, 1997; 12: 6343

[29] Uhlmann D R, Chalmers B, Jackson K A. J Appl Phys, 1964; 10: 2986

[30] Winegard W C, Majka S, Thall B M, Chalmers B. Can J Chem, 1951; 29: 320
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!