|
|
PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH |
ZHOU Guangzhao, WANG Yongxin, CHEN Zheng |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 |
|
Cite this article:
ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH. Acta Metall Sin, 2012, 48(2): 227-234.
|
Abstract The effects of hard particles with different shapes, volume fractions and sizes on two–phase grain growth have been systematically investigated by phase–field method. The results showed that most of the spherical hard particles located at the intersection of tricrystal boundary, while flaky hard particles distributed along the grain boundary. Particles of different shapes have not obvious effect on the α phase grain growth, and the effect of hard particles with different shapes on the β phase grain growth depends on the number of particles. The flaky particles have stronger pinning effect on the β phase grain growth than the spherical particles when hard particles reach enough number. The pinning effect of the hard particles is enhanced when the volume fraction increased or the size of hard particles reduced. The greater the volume fraction or the smaller the size of hard particles is, the smaller the grains’size is.
|
Received: 28 September 2011
|
Fund: Supported by National Natural Science Foundation of China (Nos.51075335, 10902086 and 51174168) and NPU Foundation for Fundamental Research (No.NPU–FFR–JC201005) |
[1] Ryum N, Hunderi O, Nes E. Scr Metall, 1983; 17: 1281[2] Moelans N, Blanpain B, Wollants. Acta Mater, 2006; 54: 1175[3] Doherty R D, Srolovitz D J, Rollett A D, Anderson M P. Scr Metall, 1987; 21: 675[4] Hassold G N, Holm E A, Srolovitz D J. Scr Metall, 1990; 24: 101[5] Miodownik M, Holm E A, Hassold G N. Scr Metall, 2000; 42: 1173[6] AndersonM P, Grest G S, Doherty R D, Kang Li, Srolovitz D J. Scr Metall, 1989; 23: 753[7] Liu Z Y, Zheng Z Q, Chen D Q, Li S C. Chin J Nonferrous Met, 2004; 14: 122(刘祖耀, 郑子樵, 陈大钦, 李世晨. 中国有色金属学报, 2004; 14: 122)[8] Zhang J X, Guan X J. Chin J Nonferrous Met, 2006; 16: 1689(张继祥, 关小军. 中国有色金属学报, 2006; 16: 1689)[9] Song X Y, Liu G Q, Gu N J. Acta Metall Sin, 1999; 35: 565(宋晓艳, 刘国权, 谷南驹. 金属学报,1999; 35: 565)[10] Moelans N, Blanpain B, Wollants P. Calphad, 2008; 32: 268[11] Suwa Y, Saito Y, Onodera H. Scr Mater, 2006; 55: 407[12] Suwa Y, Satio Y, Onodera H. Acta Mater, 2007; 55: 6881[13] Vanherpe L, Moelans N, Blanpain B, Vandewalle S. Phys Rev, 2007; 76E: 056702[14] Vanherpe L, Moelans N, Blanpain B, Vandewalle S. Comput Mater Sci, 2010; 49: 340[15] Moelans N, Blanpain B, Wollants P. Acta Mater, 2007; 55: 2173[16] Li J J, Wang J C, Yang G C. Rare Met Mater Eng, 2008; 37: 1746(李俊杰, 王锦程, 杨根仓. 稀有金属材料与工程, 2008; 37: 1746)[17] Long Y Q, Liu P, Liu Y, Pan J S. Chin J Nonferrous Met, 2009; 19: 84(龙永强, 刘平, 刘勇, 潘健生. 中国有色金属学报, 2009; 19: 84)[18] Long Z R, Gao Y J, Qiu H G, Zhang H L. Chin J Nonferrous Met, 2010; 20: 2406(罗志荣, 高英俊, 邱鸿广, 张海林.中国有色金属学报, 2010; 20: 2406)[19] GaoY J, Zhang H L, Jin X, Huang C G, Luo Z R. Acta Metall Sin, 2009; 45: 1190(高英俊, 张海林, 金 \ \ 星, 黄创高, 罗志荣. 金属学报, 2009; 45: 1190)[20] Fan D, Chen L Q. Acta Metall, 1997; 45: 3297[21] Fan D, Chen L Q. Acta Metall, 1997; 45: 4145[22] Fan D, Chen L Q. J Am Ceram Soc, 1997; 80: 1773[23] Fan D, Chen L Q. J Am Ceram Soc, 1998; 81: 526[24] Song K, Aindow M. Mater Sci Eng, 2008; A479: 365[25] Ringer S P, Li W B, Easterling K E. Acta Metall, 1989; 37: 831[26] Li W B, Easterling K E. Acta Metall, 1990; 38; 1045[27] Cherukuri B, Srinivasan R, Tamirisakandala S, Miracle D B. Scr Mater, 2009; 60: 496[28] Ringer S P, Li W B, Easterling K E. Acta Metall, 1992; 40: 275[29] Ringer S P, Li W B, Easterling K E. in Chandra ed., Recrystallization’ 90 in Metals and Materials. Warrendale, PA: TMS–AIME, 1990; 26: 483 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|