Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1167-1173    DOI:
论文 Current Issue | Archive | Adv Search |
SIMULATION AND OPTIMIZATION OF THERMAL FIELD DURING CONTINUOUS CONSTRAINED RHEO-ROLLING OF AZ31 ALLOY
GUAN Renguo, ZHANG Qiusheng, DAI Chunguang, ZHAO Zhanyong, LIU Chunming
College of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

GUAN Renguo ZHANG Qiusheng DAI Chunguang ZHAO Zhanyong LIU Chunming. SIMULATION AND OPTIMIZATION OF THERMAL FIELD DURING CONTINUOUS CONSTRAINED RHEO-ROLLING OF AZ31 ALLOY. Acta Metall Sin, 2011, 47(9): 1167-1173.

Download:  PDF(2014KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Semisolid metal processing (SSP) is recognized as a new near-shape forming technology, which combines the merits of both the liquid and the solid metal processing. Compared with the traditional rolling process, this technology has the features of low energy consumption, low cost equipment and high yield. Perhaps inevitably, a problem is the solid and liquid phases tend to separate with each other during rheo-rolling process, especially when the semisolid slurry has a low solid fraction. This problem causes macrosegregation and reduces the quality of the strip. Using rectangular groove roller may solve this problem. In this paper, numerical simulation method and experiment were combined for simulation and optimization of thermal field during continuous constrained rheo-rolling of AZ31 alloy. The results show that on the sloping plate surface, alloy temperature decreases gradually from the casting mouth to the exit with a linear pattern, the alloy temperature near the sloping plate surface is lower than that on the above surface, when the casting temperature is higher than 690℃, the melt temperature at the exit of the plate is higher than the liquidus of AZ31 alloy, which will cause product fracture. In the backward slip zone, semisolid metal deformation mainly happens, alloy temperature decreases gradually from the entrance to the exit of the roll gap, semisolid zone length increases with the casting temperature, isothermal lines have twice buckling, the buckling direction on the surface of the alloy is toward the exit of the roll gap, while the buckling direction in the center is toward the entrance of the roll gap, and their bending degree increases gradually from neutral flow plane to the entrance of the roll gap. In the forward slip zone, solid metal deformation mainly takes place, isothermal lines have once buckling, and the buckling direction is toward the exit of the gap. Under the current experimental conditions, the proper casting temperature between 670 and 690℃ is suggested.
Key words:  AZ31 Mg-alloy      semisolid      constrained rheo-rolling      numerical simulation      temperature     
Received:  27 April 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50974038 and 51034002) and National Basic Research Program of China (No.2011CB610405)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1167

[1] Guan R G. Theory and Technology of Metallic Semisolid Forming. Beijing: Metallurgical Industry Press, 2005: 11

(管仁国. 金属半固态成形理论与技术. 北京: 冶金工业出版社, 2005: 11)

[2] Flemings M C. Metall Trans, 1991; 22: 957

[3] Xie F G, Guan R G, Li J P, Liu X H. J Northeastern Univ (Nat Sci), 2009; 30: 377

(谢丰广, 管仁国, 李江平, 刘相华. 东北大学学报(自然科学版), 2009; 30: 377)

[4] Huang H Q, Cao F R, Guan R G, Zhao Z Y, Xing Z H. Acta Metall Sin, 2011; 47: 291

(黄红乾, 曹富荣, 管仁国, 赵占勇, 邢振环. 金属学报, 2011; 47: 291)

[5] Zhang Y, Xu J H, Xie S S, Ma Q. Hot Work Technol, 2010; 39: 55

(张 莹, 徐金华, 谢水生, 马 强. 热加工工艺, 2010; 39: 55)

[6] Hu Y, He B L, Yan H. Chin J Nonferrous Met, 2010; 20: 1260

(胡勇, 何柏林, 闫洪. 中国有色金属学报, 2010; 20: 1260)

[7] Kund N K, Dutta P. Trans Nonferrous Met Soc China, 2010; 20(suppl.3): 898

[8] Koeune R, Ponthot J P. J Comput Appl Math, 2010; 234: 2287

[9] Kim H H, Kang C G. Trans Nonferrous Met Soc China, 2010; 20: 1799

[10] Chen X Y, Zhang L G. Foundry, 2000; 49: 106

(陈晓阳, 张连根. 铸造, 2000; 49: 106)

[11] Zhang J X, Zhang K, Liu G J, Xu J, Shi L K. Chin J Nonferrous Met, 2000; 10: 511

(张景新, 张 奎, 刘国钧, 徐骏, 石力开. 中国有色金属学报, 2000; 10: 511)

[12] Xie S S, Yang H Q, Huang G J, Li L. J Plast Eng, 2007; 14: 80

(谢水生, 杨浩强, 黄国杰, 李 雷. 塑性工程学报, 2007; 14: 80)

[13] Haga T, Takahashi K, Ikawa M, Watari H. J Mater Process Technol, 2003; 140: 610

[14] DuanWY, GuoWD, Li Y F. Fluid Mechanics. Shenyang: Northeastern University Press, 2001: 132

(段文义, 郭文东, 李亚峰. 流体力学. 沈阳: 东北大学出版社, 2001: 132)

[15] Zhou J X, Liu R X, Chen L L, Lin H T. Foundry, 2001; 50: 404

(周建兴, 刘瑞祥, 陈立亮, 林汉同. 铸造, 2001; 50: 404)

[16] Scheil E. Z Metallk, 1942; 34: 70

[17] Luo S J, Cheng Y S, Shan W W. Rheology of Semi–Solid Metal. Beijing: National Defence Industry Press, 2011: 10

(罗守靖, 程远胜, 单巍巍. 半固态金属流变学. 北京: 国防工业出版社, 2011: 10)

[18] Chen W F. Chin J Theor Appl Mech, 1983; 1: 16

(陈文芳. 力学学报, 1983; 1: 16)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[5] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[8] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[9] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[10] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[11] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[14] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[15] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
No Suggested Reading articles found!