Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1144-1158    DOI: 10.11900/0412.1961.2023.00246
Overview Current Issue | Archive | Adv Search |
Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings
BI Zhongnan1,2(), QIN Hailong1,2, LIU Pei2, SHI Songyi2, XIE Jinli1,2, ZHANG Ji1,2
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
2Gaona Aero Material Co., Ltd., Beijing 100081, China
Cite this article: 

BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings. Acta Metall Sin, 2023, 59(9): 1144-1158.

Download:  HTML  PDF(3025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Residual stress exists in an equilibrium state inside an object without external forces, mainly due to uneven plastic deformation during object preparation. Superalloys exhibit low stacking fault energy and face difficulty in recovery. Therefore, compared with the residual stress in other metal materials, the residual stress in superalloys accumulates easily and is difficult to release and control, causing various problems in their subsequent processing and service. Starting from the formation and evolution mechanism of residual stress in superalloy forgings, this article reviews the research progress regarding the casting, forging, heat treatment, machining, and welding processes involved in residual stress characterization, numerical simulation, optimization control, etc. and focuses on analyzing the interaction behaviors between multiscale residual stress and precipitation phase transformation in superalloys. Further, this article analyzes the impact of residual stress on the service performance of superalloy forgings; the possibility of reasonable preset and utilization of residual stress is envisioned based on this.

Key words:  superalloy      residual stress      formation mechanism      numerical simulation      optimization and control     
Received:  05 June 2023     
ZTFLH:  TG115.23  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00246     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1144

Fig.1  Residual stress distribution maps of IN718 disc samples[33]
(a) schematic of testing process (ea, er, and eh indicate axial, radial, and hoop directions, respectively. positions are in mm)
(b) residual stress maps of water quenched disc samples
Fig.2  Comparisons between experimental measure-ments and finite element (FE) results at different temperatures and strain rates (ε˙) in GH4169 alloy[49]
(a) ε˙ = 10-2 s-1 (b) ε˙ = 10-3 s-1 (c) ε˙ = 10-4 s-1
Fig.3  Coupled model for residual stress calculation in temperature field, microstructure field, and stress field
Fig.4  Calculation results of residual stress after casting in GH4169 alloy
(a, b) hoop stress (a) and effective stress (b) in ingot (c, d) hoop stress (c) and effective stress (d) after homogenization
Fig.5  Stress relaxation vs time in the center of the disk during the ageing treatment[62]
(a) heating by ceramic blanket under clad insulation
(b) evolution of residual stress in the center of disk during ageing treatment
Fig.6  Schematic of residual stress control device for superalloys based on precise regulation of cooling field (super gas cooling) (a) and implementation effect (b)
Fig.7  Hoop residual stress distributions of disk forgings measured by contour method
(a) before cooling-field optimizing
(b) after cooling-field optimizing
(c) designing of cooling-field to achieve residual stress preset
Fig.8  Hoop residual stress distributions of GH4169 disk forgings measured by contour method
(a-c) before (a) and after 37000 r/min (b) and 42000 r/min (c) pre-spin of water-quenched samples (d-f) before (d) and after 37000 r/min (e) and 42000 r/min (f) pre-spin of samples with cooling-field optimized
Fig.9  TEM bright-field images with [001] γ of stress free samples (a, b) and disk samples (c, d) with residual stress aged for 0.5 h (a, c) and 8 h (b, d)[62]
Fig.10  Effects of γ" phase variant selection behavior on the stress-strain relationship of GH4169 alloy
(a) applied stress-strain curves for quasi-static in situ neutron tensile deformation (TA for tensile-aged, CA for compressive-aged)
(b) evolution of hkl-specific lattice strain of the γ phase along the longitudinal direction[88]
(c) lattice strain evolution of the γ and γ" phases
Fig.11  Low cycle fatigue test results of GH4169 alloy discs with different residual stresses[91]
(a) schematic of low cycle fatigue test method (EDM—electrical discharge machining, ω—angular speed)(b) crack length with fatigue cycles
(c) workpieces after low cycle fatigue fracture
1 Zhong Z Y. Preword of special issue for superalloys [J]. Acta Metall. Sin., 2019, 55: 1065
仲增墉. 高温合金专刊前言 [J]. 金属学报, 2019, 55: 1065
2 Chen G L. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 1988: 1
陈国良. 高温合金学 [M]. 北京: 冶金工业出版社, 1988: 1
3 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
4 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
5 Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
6 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
7 Dye D, Conlon K T, Reed R C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703
8 Withers P J, Bhadeshia H K D H. Residual stress. Part 2 - Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
doi: 10.1179/026708301101510087
9 Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ'' precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
10 Ghasri-Khouzani M, Peng H, Rogge R, et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions [J]. Mater. Sci. Eng., 2017, A707: 689
11 Masoudi S, Amirian G, Saeedi E, et al. The effect of quench-induced residual stresses on the distortion of machined thin-walled parts [J]. J. Mater. Eng. Perform., 2015, 24: 3933
doi: 10.1007/s11665-015-1695-7
12 Krempaszky C, Werner E A, Stockinger M. Measurement of marcoscopic residual stress and resulting distortion during machining [J]. Mater. Sci. Technol., 2005, 4: 109
13 Shen G S, Cooper N, Ottow N, et al. Integration and automation of residual stress and service stress modeling for superalloy component design [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 129
14 Ma K, Goetz R, Srivatsa S K. Modeling of residual stress and machining distortion in aerospace components (PREPRINT) [R]. AFRL-RX-WP-TP-2010-4152, March, 2010
15 Withers P J, Bhadeshia H K D H. Residual stress. Part 1 - Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
doi: 10.1179/026708301101509980
16 Rolph J, Preuss M, Iqbal N, et al. Residual stress evolution during manufacture of aerospace forgings [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 881
17 Xu P G, Tomota Y. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681
徐平光, 友田阳. 基于原位中子衍射材料表征技术的进展 [J]. 金属学报, 2006, 42: 681
18 Dong P, Wang H, Li J, et al. Residual stress in welded beryllium ring by neutron diffraction and finite element modeling [J]. Atom. Energy Sci. Technol., 2015, 49: 2255
董 平, 王 虹, 李 建 等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255
19 Collins D M, D'Souza N, Panwisawas C. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103
doi: 10.1016/j.scriptamat.2017.01.002
20 Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445
doi: 10.1080/00018738500101791
21 Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst. 2006, 39: 812
doi: 10.1107/S0021889806042245
22 Mo F J, Sun G A, Jian L, et al. Recent progress of residual stress distribution and structural evolution in materials and components by neutron diffraction measurement at RSND [J]. Quant. Beam Sci., 2018, 2: 15
23 Brown D W, Sisneros T A, Clausen B, et al. Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures [J]. Acta Mater., 2009, 57: 972
doi: 10.1016/j.actamat.2008.09.044
24 Zhang Z W, Feng Y F, Tan Q, et al. Residual stress distribution in Ni-based superalloy turbine discs during fabrication evaluated by neutron/X-ray diffraction measurement and thermomechanical simulation [J]. Mater. Des., 2019, 166: 107603
doi: 10.1016/j.matdes.2019.107603
25 Ma S, Brown D, Bourke M A M, et al. Microstrain evolution during creep of a high volume fraction superalloy [J]. Mater. Sci. Eng., 2005, A399: 141
26 Dye D, Stone H J, Reed R C. Intergranular and interphase microstresses [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 31
doi: 10.1016/S1359-0286(00)00019-X
27 Ma S, Seetharaman V, Majumdar B S. CRSS of γ/γ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900oC [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
28 Jaladurgam N R, Li H J, Kelleher J, et al. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction [J]. Acta Mater., 2020, 183: 182
doi: 10.1016/j.actamat.2019.11.003
29 da Fonseca J Q, Oliver E C, Bate P S, et al. Evolution of intergranular stresses during in situ straining of IF steel with different grain sizes [J]. Mater. Sci. Eng., 2006, A437: 26
30 Pommier H, Busso E P, Morgeneyer T F, et al. Intergranular damage during stress relaxation in AISI 316L-type austenitic stainless steels: Effect of carbon, nitrogen and phosphorus contents [J]. Acta Mater., 2016, 103: 893
doi: 10.1016/j.actamat.2015.11.004
31 Wagner J N, Hofmann M, Wimpory R, et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271
32 Withers P J. Mapping residual and internal stress in materials by neutron diffraction [J]. Compt. Rendus Phys., 2007, 8: 806
33 Liu X L, Luzin V, Qin H L, et al. Mapping of three-dimensional residual stresses by neutron diffraction in nickel-based superalloy discs prepared under different quenching conditions [J]. Mater. Today Commun., 2022, 32: 103876
34 Pant P, Proper S, Luzin V, et al. Mapping of residual stresses in as-built Inconel 718 fabricated by laser powder bed fusion: A neutron diffraction study of build orientation influence on residual stresses [J]. Addit. Manuf., 2020, 36: 101501
35 Rolph J, Iqbal N, Hoffman M, et al. The effect of d0 reference value on a neutron diffraction study of residual stress in a γ/γ' nickel-base superalloy [J]. J. Strain Anal. Eng. Des., 2013, 48: 219
doi: 10.1177/0309324713486273
36 Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
37 Xu C G, Li H X, Wang J F, et al. Ultrasonic shear and longitudinal wave testing method of residual stress [J]. Acta Acust., 2017, 42: 195
徐春广, 李焕新, 王俊峰 等. 残余应力的超声横纵波检测方法 [J]. 声学学报, 2017, 42: 195
38 Tai W B. Ultrasonic residual stress detection of GH4169 alloy ring forgings [D]. Nanchang: Nanchang Hangkong University, 2019
邰文彬. GH4169环锻件超声残余应力检测 [D]. 南昌: 南昌航空大学, 2019
39 Prime M B. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut [J]. J. Eng. Mater. Technol., 2001, 123: 162
doi: 10.1115/1.1345526
40 Pagliaro P, Prime M B, Swenson H, et al. Measuring multiple residual-stress components using the contour method and multiple cuts [J]. Exp. Mech., 2010, 50: 187
doi: 10.1007/s11340-009-9280-3
41 Zhongguancun Material Testing Technology Alliance. T/CSTM 00347—2020 Metallic materials determination of disk/ring forgings residual stress contour method[S]. Beijing, 2020
中关村材料试验技术联盟. T/CSTM 00347—2020 金属材料 盘/环形锻件残余应力测定 轮廓法[S]. 北京, 2020
42 Hosseinzadeh F, Bouchard P J. Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut [J]. Exp. Mech., 2013, 53: 171
doi: 10.1007/s11340-012-9627-z
43 Winiarski B, Withers P J. Micron-scale residual stress measurement by micro-hole drilling and digital image correlation [J]. Exp. Mech., 2012, 52: 417
doi: 10.1007/s11340-011-9502-3
44 Uzun F, Korsunsky A M. The use of eigenstrain theory and fuzzy techniques for intelligent modeling of residual stress and creep relaxation in welded superalloys [J]. Mater. Today: Proc., 2020, 33: 1880
45 Lin Y C, Wen D X, Deng J, et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115
doi: 10.1016/j.matdes.2014.02.041
46 Cheong K S, Busso E P. Discrete dislocation density modelling of single phase FCC polycrystal aggregates [J]. Acta Mater., 2004, 52: 5665
doi: 10.1016/j.actamat.2004.08.044
47 Hao S, Liu W K, Moran B, et al. Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels [J]. Comput. Methods Appl. Mech. Eng., 2004, 193: 1865
doi: 10.1016/j.cma.2003.12.026
48 Jang D P, Fazily P, Yoon J W. Machine learning-based constitutive model for J2-plasticity [J]. Int. J. Plast., 2021, 138: 102919
doi: 10.1016/j.ijplas.2020.102919
49 Song R H, Qin H L, Bi Z N, et al. Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy [J]. Eng. Comput., 2021, 38: 19
doi: 10.1108/EC-01-2020-0006
50 Song R H, Qin H L, Li D F, et al. An experimental and numerical study of quenching-induced residual stresses under the effect of dynamic strain aging in an IN718 superalloy disc [J]. J. Eng. Mater. Technol., 2022, 144: 011002
51 Yang Y, Jiang Y M, Liu L L, et al. Numerical simulation of thermal stress fields and crack in casting solidification process [J]. Foundry Technol., 2000, (2): 36
杨 屹, 蒋玉明, 刘力菱 等. 铸件凝固过程中热应力场及热裂的数值模拟研究分析 [J]. 铸造技术, 2000, (2): 36
52 Zhong Z Y, Zhuang J Y. Development of several important problems on producing technologies of wrought superalloy [J]. J. Iron Steel Res., 2003, 15(7): 1
仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展 [J]. 钢铁研究学报, 2003, 15(7): 1
53 Mo F J, Wu E D, Zhang C S, et al. Correlation between the microstructural defects and residual stress in a single crystal nickel-based superalloy during different creep stages [J]. Met. Mater. Int., 2018, 24: 1002
doi: 10.1007/s12540-018-0106-7
54 Farhangi H, Norouzi S, Nili-Ahmadabadi M. Effects of casting process variables on the residual stress in Ni-base superalloys [J]. J. Mater. Process. Technol., 2004, 153-154: 209
doi: 10.1016/j.jmatprotec.2004.04.199
55 Ma Y J, Zhang Y D, Zhang H W, et al. Residual stress analysis of the multi-stage forging process of a nickel-based superalloy turbine disc [J]. Proc. Inst. Mech. Eng., 2013, 227G: 213
56 Geng L, Na Y S, Park N K. Continuous cooling transformation behavior of alloy 718 [J]. Mater. Lett., 1997, 30: 401
doi: 10.1016/S0167-577X(96)00225-X
57 Karadge M, Grant B, Withers P J, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds [J]. Metall. Mater. Trans., 2011, 42A: 2301
58 Foss B J, Gray S, Hardy M C, et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548
doi: 10.1016/j.actamat.2013.01.031
59 Longuet A, Dumont C, Georges E. Advanced modeling tools for processing and lifing of aeroengine components [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 3
60 Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
doi: 10.1016/j.matdes.2016.07.078
61 Rolph J, Evans A, Paradowska A, et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. Compt. Rendus Phys., 2012, 13: 307
62 Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
63 Chaturvedi M C, Han Y. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7
doi: 10.1016/0025-5416(87)90264-3
64 Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289
65 Dahan Y, Nouveau S, Georges E, et al. Residual stresses in Inconel 718 engine disks [A]. MATEC Web Conference [C]. Paris, France: EDP science, 2014, 14: 10003
66 Soori M, Arezoo B. A review in machining-induced residual stress [J]. J. New Technol. Mater., 2022, 12: 64
67 Li Z X, Shu X D. Residual stress analysis of multi-pass cold spinning process [J]. Chin. J. Aeronaut., 2022, 35: 259
doi: 10.1016/j.cja.2021.07.004
68 Ulutan D, Arisoy Y M, Özel T, et al. Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function [J]. Procedia CIRP, 2014, 13: 365
doi: 10.1016/j.procir.2014.04.062
69 Zhu H Y, Qu X M, Cao J, et al. Study on stress relaxation characteristics of FGH95 powder superalloy treated by laser shock peening [J]. Mater. Res. Express, 2022, 9: 106502
doi: 10.1088/2053-1591/ac95f9
70 Liu M, Zheng Q, Wang X, et al. Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique [J]. Mech. Mater., 2022, 164: 104143
doi: 10.1016/j.mechmat.2021.104143
71 Zhou W F, Ren X D, Ren Y P, et al. Laser shock processing on Ni-based superalloy K417 and its effect on thermal relaxation of residual stress [J]. Int. J. Adv. Manuf. Technol., 2017, 88: 675
doi: 10.1007/s00170-016-8796-9
72 Yu L, Cao R. Welding crack of Ni-based alloys: A review [J]. Acta Metall. Sin., 2021, 57: 16
doi: 10.11900/0412.1961.2020.00200
余 磊, 曹 睿. 镍基合金焊接裂纹研究现状 [J]. 金属学报, 2021, 57: 16
73 Preuss M, Withers P J, Pang J W L, et al. Inertia welding nickel-based superalloy: Part II. Residual stress characterization [J]. Metall. Mater. Trans., 2002, 33A: 3227
74 Iqbal N, Rolph J, Moat R, et al. A comparison of residual stress development in inertia friction welded fine grain and coarse grain nickel-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4056
75 Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
76 Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
77 Wang D, Huang J H, Tan C L, et al. Review on effects of cyclic thermal input on microstructure and property of materials in laser additive manufacturing [J]. Acta Metall. Sin., 2022, 58: 1221
doi: 10.11900/0412.1961.2021.00310
王 迪, 黄锦辉, 谭超林 等. 激光增材制造过程中循环热输入对组织和性能的影响 [J]. 金属学报, 2022, 58: 1221
78 Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
79 Zhang D Y, Feng Z, Wang C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Mater. Sci. Eng., 2018, A724: 357
80 Perevoshchikova N, Rigaud J, Sha Y, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert's design [J]. Rapid Prototyp. J., 2017, 23: 881
doi: 10.1108/RPJ-04-2016-0063
81 Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019: 174: 107793
doi: 10.1016/j.matdes.2019.107793
82 Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
83 Rauer G, Kühhorn A, Springmann M. Residual stress modelling and inverse heat transfer coefficients estimation of a nickel-based superalloy disc forging [A]. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition [C]. Düsseldorf: ASME, 2014: 1
84 Wong T, Venkatesh V, Turner T J. Data infrastructure developed for PW-8: Nickel base superalloy residual stress foundational engineering problem [A]. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015) [C]. Cham: Springer, 2015: 247
85 Bi Z N, Tang C, Qu J L, et al. Residual stress control for superalloys disk cooling treatments [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Boston: John Wiley & Sons, Inc., 2014: 787
86 Zhu J J, Yuan W H. Effect of pre-stretching on residual stresses and microstructures of Inconel 718 superalloy [J]. Metals, 2021, 11: 614
doi: 10.3390/met11040614
87 Qin H L, Bi Z N, Zhang R Y, et al. Stress-induced variant selection of γ″ phase in Inconel 718 during service: Mechanism and effects on mechanical behavior [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 713
88 Zhang R Y, Qin H L, Bi Z N, et al. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy [J]. J. Mater. Sci. Technol., 2022, 126: 169
doi: 10.1016/j.jmst.2022.03.018
89 Rao A, Bouchard P J, Northover S M, et al. Anelasticity in austenitic stainless steel [J]. Acta Mater., 2012, 60: 6851
doi: 10.1016/j.actamat.2012.08.060
90 Wang R Q, Li D, Hu D Y, et al. Effects of heat-treatment residual stress on low cycle fatigue life of a turbine disk in PM superalloy [A]. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition [C]. Montreal: ASME, 2015: 1
91 Fan M L, Chen C Y, Xuan H J, et al. Effect of residual stress induced by different cooling methods in heat treatment on the fatigue crack propagation behaviour of GH4169 disc [J]. Materials, 2022, 15: 5228
doi: 10.3390/ma15155228
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[9] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[10] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[11] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[12] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[14] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[15] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
No Suggested Reading articles found!