|
|
Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings |
BI Zhongnan1,2( ), QIN Hailong1,2, LIU Pei2, SHI Songyi2, XIE Jinli1,2, ZHANG Ji1,2 |
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2Gaona Aero Material Co., Ltd., Beijing 100081, China |
|
Cite this article:
BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings. Acta Metall Sin, 2023, 59(9): 1144-1158.
|
Abstract Residual stress exists in an equilibrium state inside an object without external forces, mainly due to uneven plastic deformation during object preparation. Superalloys exhibit low stacking fault energy and face difficulty in recovery. Therefore, compared with the residual stress in other metal materials, the residual stress in superalloys accumulates easily and is difficult to release and control, causing various problems in their subsequent processing and service. Starting from the formation and evolution mechanism of residual stress in superalloy forgings, this article reviews the research progress regarding the casting, forging, heat treatment, machining, and welding processes involved in residual stress characterization, numerical simulation, optimization control, etc. and focuses on analyzing the interaction behaviors between multiscale residual stress and precipitation phase transformation in superalloys. Further, this article analyzes the impact of residual stress on the service performance of superalloy forgings; the possibility of reasonable preset and utilization of residual stress is envisioned based on this.
|
Received: 05 June 2023
|
|
1 |
Zhong Z Y. Preword of special issue for superalloys [J]. Acta Metall. Sin., 2019, 55: 1065
|
|
仲增墉. 高温合金专刊前言 [J]. 金属学报, 2019, 55: 1065
|
2 |
Chen G L. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 1988: 1
|
|
陈国良. 高温合金学 [M]. 北京: 冶金工业出版社, 1988: 1
|
3 |
Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
|
|
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
|
4 |
Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
|
|
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
|
5 |
Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
|
6 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
|
7 |
Dye D, Conlon K T, Reed R C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703
|
8 |
Withers P J, Bhadeshia H K D H. Residual stress. Part 2 - Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
doi: 10.1179/026708301101510087
|
9 |
Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ'' precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
|
10 |
Ghasri-Khouzani M, Peng H, Rogge R, et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions [J]. Mater. Sci. Eng., 2017, A707: 689
|
11 |
Masoudi S, Amirian G, Saeedi E, et al. The effect of quench-induced residual stresses on the distortion of machined thin-walled parts [J]. J. Mater. Eng. Perform., 2015, 24: 3933
doi: 10.1007/s11665-015-1695-7
|
12 |
Krempaszky C, Werner E A, Stockinger M. Measurement of marcoscopic residual stress and resulting distortion during machining [J]. Mater. Sci. Technol., 2005, 4: 109
|
13 |
Shen G S, Cooper N, Ottow N, et al. Integration and automation of residual stress and service stress modeling for superalloy component design [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 129
|
14 |
Ma K, Goetz R, Srivatsa S K. Modeling of residual stress and machining distortion in aerospace components (PREPRINT) [R]. AFRL-RX-WP-TP-2010-4152, March, 2010
|
15 |
Withers P J, Bhadeshia H K D H. Residual stress. Part 1 - Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
doi: 10.1179/026708301101509980
|
16 |
Rolph J, Preuss M, Iqbal N, et al. Residual stress evolution during manufacture of aerospace forgings [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 881
|
17 |
Xu P G, Tomota Y. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681
|
|
徐平光, 友田阳. 基于原位中子衍射材料表征技术的进展 [J]. 金属学报, 2006, 42: 681
|
18 |
Dong P, Wang H, Li J, et al. Residual stress in welded beryllium ring by neutron diffraction and finite element modeling [J]. Atom. Energy Sci. Technol., 2015, 49: 2255
|
|
董 平, 王 虹, 李 建 等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255
|
19 |
Collins D M, D'Souza N, Panwisawas C. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103
doi: 10.1016/j.scriptamat.2017.01.002
|
20 |
Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445
doi: 10.1080/00018738500101791
|
21 |
Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst. 2006, 39: 812
doi: 10.1107/S0021889806042245
|
22 |
Mo F J, Sun G A, Jian L, et al. Recent progress of residual stress distribution and structural evolution in materials and components by neutron diffraction measurement at RSND [J]. Quant. Beam Sci., 2018, 2: 15
|
23 |
Brown D W, Sisneros T A, Clausen B, et al. Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures [J]. Acta Mater., 2009, 57: 972
doi: 10.1016/j.actamat.2008.09.044
|
24 |
Zhang Z W, Feng Y F, Tan Q, et al. Residual stress distribution in Ni-based superalloy turbine discs during fabrication evaluated by neutron/X-ray diffraction measurement and thermomechanical simulation [J]. Mater. Des., 2019, 166: 107603
doi: 10.1016/j.matdes.2019.107603
|
25 |
Ma S, Brown D, Bourke M A M, et al. Microstrain evolution during creep of a high volume fraction superalloy [J]. Mater. Sci. Eng., 2005, A399: 141
|
26 |
Dye D, Stone H J, Reed R C. Intergranular and interphase microstresses [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 31
doi: 10.1016/S1359-0286(00)00019-X
|
27 |
Ma S, Seetharaman V, Majumdar B S. CRSS of γ/γ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900oC [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
|
28 |
Jaladurgam N R, Li H J, Kelleher J, et al. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction [J]. Acta Mater., 2020, 183: 182
doi: 10.1016/j.actamat.2019.11.003
|
29 |
da Fonseca J Q, Oliver E C, Bate P S, et al. Evolution of intergranular stresses during in situ straining of IF steel with different grain sizes [J]. Mater. Sci. Eng., 2006, A437: 26
|
30 |
Pommier H, Busso E P, Morgeneyer T F, et al. Intergranular damage during stress relaxation in AISI 316L-type austenitic stainless steels: Effect of carbon, nitrogen and phosphorus contents [J]. Acta Mater., 2016, 103: 893
doi: 10.1016/j.actamat.2015.11.004
|
31 |
Wagner J N, Hofmann M, Wimpory R, et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271
|
32 |
Withers P J. Mapping residual and internal stress in materials by neutron diffraction [J]. Compt. Rendus Phys., 2007, 8: 806
|
33 |
Liu X L, Luzin V, Qin H L, et al. Mapping of three-dimensional residual stresses by neutron diffraction in nickel-based superalloy discs prepared under different quenching conditions [J]. Mater. Today Commun., 2022, 32: 103876
|
34 |
Pant P, Proper S, Luzin V, et al. Mapping of residual stresses in as-built Inconel 718 fabricated by laser powder bed fusion: A neutron diffraction study of build orientation influence on residual stresses [J]. Addit. Manuf., 2020, 36: 101501
|
35 |
Rolph J, Iqbal N, Hoffman M, et al. The effect of d0 reference value on a neutron diffraction study of residual stress in a γ/γ' nickel-base superalloy [J]. J. Strain Anal. Eng. Des., 2013, 48: 219
doi: 10.1177/0309324713486273
|
36 |
Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
|
37 |
Xu C G, Li H X, Wang J F, et al. Ultrasonic shear and longitudinal wave testing method of residual stress [J]. Acta Acust., 2017, 42: 195
|
|
徐春广, 李焕新, 王俊峰 等. 残余应力的超声横纵波检测方法 [J]. 声学学报, 2017, 42: 195
|
38 |
Tai W B. Ultrasonic residual stress detection of GH4169 alloy ring forgings [D]. Nanchang: Nanchang Hangkong University, 2019
|
|
邰文彬. GH4169环锻件超声残余应力检测 [D]. 南昌: 南昌航空大学, 2019
|
39 |
Prime M B. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut [J]. J. Eng. Mater. Technol., 2001, 123: 162
doi: 10.1115/1.1345526
|
40 |
Pagliaro P, Prime M B, Swenson H, et al. Measuring multiple residual-stress components using the contour method and multiple cuts [J]. Exp. Mech., 2010, 50: 187
doi: 10.1007/s11340-009-9280-3
|
41 |
Zhongguancun Material Testing Technology Alliance. T/CSTM 00347—2020 Metallic materials determination of disk/ring forgings residual stress contour method[S]. Beijing, 2020
|
|
中关村材料试验技术联盟. T/CSTM 00347—2020 金属材料 盘/环形锻件残余应力测定 轮廓法[S]. 北京, 2020
|
42 |
Hosseinzadeh F, Bouchard P J. Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut [J]. Exp. Mech., 2013, 53: 171
doi: 10.1007/s11340-012-9627-z
|
43 |
Winiarski B, Withers P J. Micron-scale residual stress measurement by micro-hole drilling and digital image correlation [J]. Exp. Mech., 2012, 52: 417
doi: 10.1007/s11340-011-9502-3
|
44 |
Uzun F, Korsunsky A M. The use of eigenstrain theory and fuzzy techniques for intelligent modeling of residual stress and creep relaxation in welded superalloys [J]. Mater. Today: Proc., 2020, 33: 1880
|
45 |
Lin Y C, Wen D X, Deng J, et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115
doi: 10.1016/j.matdes.2014.02.041
|
46 |
Cheong K S, Busso E P. Discrete dislocation density modelling of single phase FCC polycrystal aggregates [J]. Acta Mater., 2004, 52: 5665
doi: 10.1016/j.actamat.2004.08.044
|
47 |
Hao S, Liu W K, Moran B, et al. Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels [J]. Comput. Methods Appl. Mech. Eng., 2004, 193: 1865
doi: 10.1016/j.cma.2003.12.026
|
48 |
Jang D P, Fazily P, Yoon J W. Machine learning-based constitutive model for J2-plasticity [J]. Int. J. Plast., 2021, 138: 102919
doi: 10.1016/j.ijplas.2020.102919
|
49 |
Song R H, Qin H L, Bi Z N, et al. Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy [J]. Eng. Comput., 2021, 38: 19
doi: 10.1108/EC-01-2020-0006
|
50 |
Song R H, Qin H L, Li D F, et al. An experimental and numerical study of quenching-induced residual stresses under the effect of dynamic strain aging in an IN718 superalloy disc [J]. J. Eng. Mater. Technol., 2022, 144: 011002
|
51 |
Yang Y, Jiang Y M, Liu L L, et al. Numerical simulation of thermal stress fields and crack in casting solidification process [J]. Foundry Technol., 2000, (2): 36
|
|
杨 屹, 蒋玉明, 刘力菱 等. 铸件凝固过程中热应力场及热裂的数值模拟研究分析 [J]. 铸造技术, 2000, (2): 36
|
52 |
Zhong Z Y, Zhuang J Y. Development of several important problems on producing technologies of wrought superalloy [J]. J. Iron Steel Res., 2003, 15(7): 1
|
|
仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展 [J]. 钢铁研究学报, 2003, 15(7): 1
|
53 |
Mo F J, Wu E D, Zhang C S, et al. Correlation between the microstructural defects and residual stress in a single crystal nickel-based superalloy during different creep stages [J]. Met. Mater. Int., 2018, 24: 1002
doi: 10.1007/s12540-018-0106-7
|
54 |
Farhangi H, Norouzi S, Nili-Ahmadabadi M. Effects of casting process variables on the residual stress in Ni-base superalloys [J]. J. Mater. Process. Technol., 2004, 153-154: 209
doi: 10.1016/j.jmatprotec.2004.04.199
|
55 |
Ma Y J, Zhang Y D, Zhang H W, et al. Residual stress analysis of the multi-stage forging process of a nickel-based superalloy turbine disc [J]. Proc. Inst. Mech. Eng., 2013, 227G: 213
|
56 |
Geng L, Na Y S, Park N K. Continuous cooling transformation behavior of alloy 718 [J]. Mater. Lett., 1997, 30: 401
doi: 10.1016/S0167-577X(96)00225-X
|
57 |
Karadge M, Grant B, Withers P J, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds [J]. Metall. Mater. Trans., 2011, 42A: 2301
|
58 |
Foss B J, Gray S, Hardy M C, et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548
doi: 10.1016/j.actamat.2013.01.031
|
59 |
Longuet A, Dumont C, Georges E. Advanced modeling tools for processing and lifing of aeroengine components [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 3
|
60 |
Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
doi: 10.1016/j.matdes.2016.07.078
|
61 |
Rolph J, Evans A, Paradowska A, et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. Compt. Rendus Phys., 2012, 13: 307
|
62 |
Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
|
秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
63 |
Chaturvedi M C, Han Y. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7
doi: 10.1016/0025-5416(87)90264-3
|
64 |
Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289
|
65 |
Dahan Y, Nouveau S, Georges E, et al. Residual stresses in Inconel 718 engine disks [A]. MATEC Web Conference [C]. Paris, France: EDP science, 2014, 14: 10003
|
66 |
Soori M, Arezoo B. A review in machining-induced residual stress [J]. J. New Technol. Mater., 2022, 12: 64
|
67 |
Li Z X, Shu X D. Residual stress analysis of multi-pass cold spinning process [J]. Chin. J. Aeronaut., 2022, 35: 259
doi: 10.1016/j.cja.2021.07.004
|
68 |
Ulutan D, Arisoy Y M, Özel T, et al. Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function [J]. Procedia CIRP, 2014, 13: 365
doi: 10.1016/j.procir.2014.04.062
|
69 |
Zhu H Y, Qu X M, Cao J, et al. Study on stress relaxation characteristics of FGH95 powder superalloy treated by laser shock peening [J]. Mater. Res. Express, 2022, 9: 106502
doi: 10.1088/2053-1591/ac95f9
|
70 |
Liu M, Zheng Q, Wang X, et al. Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique [J]. Mech. Mater., 2022, 164: 104143
doi: 10.1016/j.mechmat.2021.104143
|
71 |
Zhou W F, Ren X D, Ren Y P, et al. Laser shock processing on Ni-based superalloy K417 and its effect on thermal relaxation of residual stress [J]. Int. J. Adv. Manuf. Technol., 2017, 88: 675
doi: 10.1007/s00170-016-8796-9
|
72 |
Yu L, Cao R. Welding crack of Ni-based alloys: A review [J]. Acta Metall. Sin., 2021, 57: 16
doi: 10.11900/0412.1961.2020.00200
|
|
余 磊, 曹 睿. 镍基合金焊接裂纹研究现状 [J]. 金属学报, 2021, 57: 16
|
73 |
Preuss M, Withers P J, Pang J W L, et al. Inertia welding nickel-based superalloy: Part II. Residual stress characterization [J]. Metall. Mater. Trans., 2002, 33A: 3227
|
74 |
Iqbal N, Rolph J, Moat R, et al. A comparison of residual stress development in inertia friction welded fine grain and coarse grain nickel-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4056
|
75 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
|
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
76 |
Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
|
77 |
Wang D, Huang J H, Tan C L, et al. Review on effects of cyclic thermal input on microstructure and property of materials in laser additive manufacturing [J]. Acta Metall. Sin., 2022, 58: 1221
doi: 10.11900/0412.1961.2021.00310
|
|
王 迪, 黄锦辉, 谭超林 等. 激光增材制造过程中循环热输入对组织和性能的影响 [J]. 金属学报, 2022, 58: 1221
|
78 |
Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
|
79 |
Zhang D Y, Feng Z, Wang C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Mater. Sci. Eng., 2018, A724: 357
|
80 |
Perevoshchikova N, Rigaud J, Sha Y, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert's design [J]. Rapid Prototyp. J., 2017, 23: 881
doi: 10.1108/RPJ-04-2016-0063
|
81 |
Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019: 174: 107793
doi: 10.1016/j.matdes.2019.107793
|
82 |
Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
|
|
毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
|
83 |
Rauer G, Kühhorn A, Springmann M. Residual stress modelling and inverse heat transfer coefficients estimation of a nickel-based superalloy disc forging [A]. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition [C]. Düsseldorf: ASME, 2014: 1
|
84 |
Wong T, Venkatesh V, Turner T J. Data infrastructure developed for PW-8: Nickel base superalloy residual stress foundational engineering problem [A]. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015) [C]. Cham: Springer, 2015: 247
|
85 |
Bi Z N, Tang C, Qu J L, et al. Residual stress control for superalloys disk cooling treatments [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Boston: John Wiley & Sons, Inc., 2014: 787
|
86 |
Zhu J J, Yuan W H. Effect of pre-stretching on residual stresses and microstructures of Inconel 718 superalloy [J]. Metals, 2021, 11: 614
doi: 10.3390/met11040614
|
87 |
Qin H L, Bi Z N, Zhang R Y, et al. Stress-induced variant selection of γ″ phase in Inconel 718 during service: Mechanism and effects on mechanical behavior [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 713
|
88 |
Zhang R Y, Qin H L, Bi Z N, et al. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy [J]. J. Mater. Sci. Technol., 2022, 126: 169
doi: 10.1016/j.jmst.2022.03.018
|
89 |
Rao A, Bouchard P J, Northover S M, et al. Anelasticity in austenitic stainless steel [J]. Acta Mater., 2012, 60: 6851
doi: 10.1016/j.actamat.2012.08.060
|
90 |
Wang R Q, Li D, Hu D Y, et al. Effects of heat-treatment residual stress on low cycle fatigue life of a turbine disk in PM superalloy [A]. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition [C]. Montreal: ASME, 2015: 1
|
91 |
Fan M L, Chen C Y, Xuan H J, et al. Effect of residual stress induced by different cooling methods in heat treatment on the fatigue crack propagation behaviour of GH4169 disc [J]. Materials, 2022, 15: 5228
doi: 10.3390/ma15155228
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|