Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 455-461    DOI: 10.3724/SP.J.1037.2011.00010
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE, CORROSION AND WEAR RESISTANCES OF MICROARC OXIDATION COATING ON Al ALLOY 7075
WANG Yanqiu1), WANG Yue2), CHEN Paiming2), SHAO Yawei1), WANG Fuhui1, 3)
1) Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001\par
2) Luoyang Ship Material Research Institute, Luoyang 471039
3) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Yanqiu WANG Yue CHEN Paiming SHAO Yawei WANG Fuhui. MICROSTRUCTURE, CORROSION AND WEAR RESISTANCES OF MICROARC OXIDATION COATING ON Al ALLOY 7075. Acta Metall Sin, 2011, 47(4): 455-461.

Download:  PDF(1169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microarc oxidation (MAO), an important surface treatment technology for Al alloys in stead of hard anodization, was applied to prepare coating on Al alloy 7075, of which the microstructure and properties of the anti-corrosion and anti--wear were studied by XRD, SEM, neutral salt spray (NSS) test and ball-on-disc friction and wear test. The results show that the MAO coating formed on Al alloy 7075 mainly consists of γ-Al2O3, α-Al2O3 and some amorphous SiO2. Si element results from electrolyte or from substrate. MAO coating exhibits excellent corrosion resistance, for example, coatings with thickness of 70 μm can endure more than 2000 h in NSS test even without seal treatment. Dense microstructure of MAO coating results in the excellent corrosion resistance. Post seal treatment can greatly enhance the corrosion resistance of the MAO coating, even for thin coating. MAO coating fabricated on Al alloy 7075 possesses similar friction coefficient but much higher wear resistance compared with hard anodized film, for example, the former is as 50 times as the wear resistance of the later. The MAO coating is just slightly worn and its frication coefficient remains unchanged throughout the test.
Key words:  Al alloy      microarc oxidation      coating      corrosion resistance      wear resistance     
Received:  06 January 2011     
ZTFLH: 

TG174.45

 
Fund: 

Supported by Fundamental Research Funds for the Central Universities (No.HEUCFR1021)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00010     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/455

[1] Srinivasan P B, Blawert C, Dietzel W. Mater Sci Eng, 2008; A494: 401

[2] Nie X, Meletis E I, Jiang J C, Leyland A, Yerokhin A L, Matthews A. Surf Coat Technol, 2002; 149: 245

[3] Curran J A, Kalkanci H, Magurova Y, Clyne T W. Surf Coat Technol, 2007; 201: 8683

[4] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J. Surf Coat Technol, 1999; 122: 73

[5] Srinivasan P B, Liang J, Blawert C, Stormer M, Dietzel W. Appl Surf Sci, 2009; 255: 4212

[6] Li X J, Cheng G A, Xue W B, Zheng R T, Cheng Y J. Mater Chem Phys, 2008; 107: 148

[7] Wang Y M, Lei T Q, Jiang B L, Guo L X. Appl Surf Sci, 2004; 233: 258

[8] Yerokhin A L, Leyland A, Matthews A. Appl Surf Sci, 2002; 200: 172

[9] Wu S D. Torpedo Technol, 2005; 13(3): 49

(吴始栋. 鱼雷技术, 2005; 13(3): 49)

[10] Lin X F. Aluminium Fabrication, 2003; 148(1): 10

(林学丰. 铝加工, 2003; 148(1): 10)

[11] Shahid M. J Mater Sci, 1997; 32: 3775

[12] Cong S L, Ni X L, Yang Y W, Tang X Y, Zhao R G. J Inorg Mater, 1986; 1(2): 160

(从松林, 倪祥珑, 杨以文, 唐晓燕, 赵荣根. 无机材料学报, 1986; 1(2): 160)

[13] Xue W B. Acta Metall Sin, 2006; 42: 350

(薛文斌. 金属学报, 2006; 42: 350)

[14] Xue W B, Deng Z W, Chen R Y, Zhang T H. Heat Treat Met, 2000; (2): 5

(薛文斌, 邓志威, 陈如意, 张通和. 金属热处理, 2000; (2): 5)

[15] Arrabal R, Matykina E, Hashimoto T, Skeldon P, Thompson G E. Surf Coat Technol, 2009; 203: 2207

[16] Srinivasan P B, Blawert C, Dietzel W. Wear, 2009; 266: 1241
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[6] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[7] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[10] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[11] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[12] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[13] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[14] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[15] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
No Suggested Reading articles found!