Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (10): 1401-1410    DOI: 10.11900/0412.1961.2022.00119
Research paper Current Issue | Archive | Adv Search |
Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy
LI Xiaobing1, QIAN Kun1, SHU Lei1, ZHANG Mengshu1, ZHANG Jinhu2, CHEN Bo1(), LIU Kui1
1.Department of Materials Science and Technology Research, Ji Hua Laboratory, Foshan 528200, China
2.Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy. Acta Metall Sin, 2023, 59(10): 1401-1410.

Download:  HTML  PDF(3894KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Advanced intermetallic β-solidifying γ-TiAl-based alloys have various potential applications in the aerospace and automobile industries due to their low density, functionality at higher temperatures, and high specific strength/modulus. The crucial aspect that needs to be considered when developing a new β-solidifying γ-TiAl alloy is to clarify the influence law of β-stabilizer elements on the phase transformation behavior of γ-TiAl alloys. In this work, the impact of W contents (0.5%-1.0%, atomic fraction) on the phase transformation behavior and microstructure characteristics of Ti-42Al-5Mn-xW (atomic fraction) alloy with low cost and superior temperature workability was systematically investigated. The findings demonstrate that there were minor changes in the β-phase single region temperature (Tβ ) and γ phase solvus temperature (Tγ-solv); furthermore, the eutectoid reaction temperature (Teut) increases with the W content from 0.5% to 1.0%. Addition of W influences the solid phase transformation pathway to a certain extent. When the concentration of W increases to 0.5%, the equilibrium phase of the alloy at near service temperature gradually changes from α2 + γ + Laves to βo + α2 + γ + Laves. Additionally, W addition will also have a substantial effect on the lamellar microstructure. The volume fraction of lamellar microstructure considerably decreased after alloying with (0.5%-1.0%)W for Ti-42Al-5Mn alloy when being treated in the (γ + α + β) triple-phase region followed by furnace cooling. Increasing the W content to 0.8% and 1.0% results in the development of γ and βo grain phases with almost complete removal of α2/γ lamellar structures. However, the W-free and W-bearing Ti-42Al-5Mn alloys show near complete lamellar structures when treated in (α + β) two-phase region followed by furnace cooling. Furthermore, when the content of W increased from 0.5% to 1.0%, an equiaxed grain structure with refined lamellar colonies is typically obtained.

Key words:  TiAl alloy      W content      phase transformation      lamellar structure      grain refinement     
Received:  15 March 2022     
ZTFLH:  TG146.23  
Fund: National Natural Science Foundation of China(51971215);Scientific Research Project of Ji Hua Laboratory(X210291TL210)
Corresponding Authors:  CHEN Bo, professor, Tel: 13066683332, E-mail: chenbo@jihualab.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00119     OR     https://www.ams.org.cn/EN/Y2023/V59/I10/1401

xAlMnWTi
041.624.87-Bal.
0.541.814.710.49Bal.
0.841.544.900.78Bal.
1.041.724.770.98Bal.
Table 1  Chemical compositions of the Ti-42Al-5Mn-xW alloys
Fig.1  DSC curves of the Ti-42Al-5Mn-xW with x = 0.5 (a) and1.0 (b)
Fig.2  Back scattering electron (BSE) images of Ti-42Al-5Mn-0.5W alloy after annealing at 1160oC (a), 1170oC (b), 1180oC (c), 1210oC (d), 1220oC (e), 1230oC (f), 1320oC (g), and 1330oC (h) for 1 h,and then water cooling (WC) (γgγ grain, γlamellaeγ lamellae)
Fig.3  Effects of W concentration on the phase transformation temperature in Ti-42Al-5Mn-xW (The data of Ti-42Al-5Mn is quoted from Ref.[14]. Teut—eutectoid reaction temperature, Tγ-solvγ phase solvus temperature, Tββ-phase single region temperature)
Fig.4  BSE images of Ti-42Al-5Mn-xW alloys with x = 0 (a1-a3), x = 0.5 (b1-b3), x = 0.8 (c1-c3), and x = 1.0 (d1-d3) after annealing at 1200oC for 1 h and then WC (a1-d1), air cooling (AC) (a2-d2), and furnace cooling (FC) (a3-d3) (Insets in Figs.4a1 and a2 show the high magnified images. γpγ platelet)
xWCACFC
α2/γ regionγgβoα2/γ regionγgβoα2/γ regionγgβo
087.4 ± 0.23.8 ± 0.18.9 ± 0.274.5 ± 0.914.6 ± 0.910.9 ± 0.869.2 ± 0.424.8 ± 0.56.1 ± 0.6
0.563.3 ± 0.713.9 ± 0.522.8 ± 0.954.3 ± 1.119.2 ± 0.426.5 ± 1.723.9 ± 0.359.8 ± 0.516.3 ± 0.6
0.854.8 ± 0.815.5 ± 0.829.7 ± 0.741.5 ± 1.124.6 ± 1.133.9 ± 1.115.9 ± 0.462.6 ± 0.521.5 ± 0.9
1.058.4 ± 0.69.5 ± 0.732.1 ± 0.456.9 ± 1.113.1 ± 0.630.0 ± 0.918.1 ± 0.560.2 ± 0.921.7 ± 1.3
Table 2  Quantitative statistical results of microstructures for Ti-42Al-5Mn-xW alloys treated at 1200oC for 1 h and then cooled with different methods
Fig.5  BSE images of Ti-42Al-5Mn-xW alloys with x = 0 (a1-a3), x = 0.5 (b1-b3), x = 0.8 (c1-c3), and x = 1.0 (d1-d3) after annealing at 1300oC for 1 h and then WC (a1-d1), AC (a2-d2), and FC (a3-d3) (Insets in Figs.5a1-d1 show the high magnified images)
xWCACFC
α2βoα2βo + γp regionα2/γ regionγgβo
076.1 ± 0.323.9 ± 0.383.4 ± 0.316.6 ± 0.371.3 ± 0.420.5 ± 0.38.2 ± 0.2
0.560.1 ± 0.539.9 ± 0.564.6 ± 0.535.4 ± 0.555.0 ± 1.529.5 ± 2.515.5 ± 0.5
0.849.2 ± 1.050.8 ± 1.077.5 ± 0.622.5 ± 0.639.0 ± 0.541.8 ± 0.419.2 ± 0.3
1.036.8 ± 0.463.2 ± 0.480.8 ± 1.119.2 ± 1.145.8 ± 0.531.5 ± 0.722.7 ± 0.9
Table 3  Quantitative statistical results of microstructures for Ti-42Al-5Mn-xW alloys treated at 1300oC for 1 h and then cooled with different methods
Fig.6  Calculated phase diagram of Ti-42Al-5Mn-xW (x = 0-2) (The investigated alloys with the nominal composition Ti-42Al-5Mn-0.5W and Ti-42Al-5Mn-1.0W are indicated by vertical lines. L—liquid; letters a, b, and c indicate Teut, Tγ-solv, and Tβ, respectively)
Fig.7  Microstructures of Ti-42Al-5Mn-0.5W after aging at 800oC for 720 h
(a) EPMA-BSE image
(b) an enlarged view of the box in Fig.7a
(c) EBSD image
PhaseTiAlMnW
γ52.30 ± 0.6244.43 ± 1.313.02 ± 0.180.31 ± 0.37
βo55.36 ± 0.1332.03 ± 0.5410.64 ± 0.302.16 ± 0.15
α260.23 ± 0.3433.82 ± 0.425.13 ± 1.230.89 ± 0.71
Laves40.91 ± 1.2630.00 ± 0.5128.52 ± 1.830.51 ± 0.18
Table 4  Chemical compositions of the different phases in the original βo region for the Ti-42Al-5Mn-0.5W after aging at 800oC for 720 h used by EPMA-EDS
1 Qu C F. Research and development of intermetallic titanium aluminides [J]. Rare Met. Mater. Eng., 1991, 20: 19
屈翠芬. 钛铝系金属间化合物的研究与发展 [J]. 稀有金属材料与工程, 1991, 20: 19
2 Qin G W, Hao S M. Ti-Al system intermetallic compounds [J]. Rare Met. Mater. Eng., 1995, 24(2): 1
秦高梧, 郝士明. Ti-Al系金属间化合物 [J]. 稀有金属材料与工程, 1995, 24(2): 1
3 Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709 pmid: 27443900
4 Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677 pmid: 27322822
5 Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123
doi: 10.1016/j.intermet.2006.01.064
6 Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy [J]. Intermetallics, 2008, 16: 827
doi: 10.1016/j.intermet.2008.03.008
7 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
8 Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J] JOM, 2018, 70: 553
doi: 10.1007/s11837-018-2747-x
9 Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAl alloy for blades and structural components [J]. Scr. Mater., 2002, 47: 399
doi: 10.1016/S1359-6462(02)00158-6
10 Zhao P X, Li X B, Tang H J, et al. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition [J]. Oxid. Met., 2020, 93: 433
doi: 10.1007/s11085-020-09964-9
11 Tang H J, Li X B, Ma Y C, et al. Multistep evolution of βo phase during isothermal annealing of Ti-42Al-5Mn alloy: Formation of Laves phase [J]. Intermetallics, 2020, 126: 106932
doi: 10.1016/j.intermet.2020.106932
12 Li X B, Tang H J, Xing W W, et al. Microstructural stability, phase evolution and mechanical properties of a forged W-modified high-Mn β-γ-TiAl alloy [J]. Intermetallics, 2021, 136: 107230
doi: 10.1016/j.intermet.2021.107230
13 Li X B, Zhao P X, Chen B, et al. Effect of W addition on the solidification microstructure and element distribution behavior in Ti-42Al-5Mn alloy [J]. Rare Met. Mater. Eng., 2022, 51: 3850
李小兵, 赵鹏翔, 陈 波 等. W添加对Ti-42Al-5Mn合金凝固组织和元素分布行为的影响 [J]. 稀有金属材料与工程, 2022, 51: 3850
14 Xu H, Li X B, Xing W W, et al. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy [J]. J. Mater. Sci. Technol., 2019, 35: 2652
doi: 10.1016/j.jmst.2019.05.061
15 Yang H W, Lin C. Phase transformation and microstructural evolution in Ti-44Al-4Nb-4Zr alloy during heat treatment [J]. Metall. Mater. Trans., 2006, 37A: 3191
16 Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy [J]. Intermetallics, 2014, 44: 128
doi: 10.1016/j.intermet.2013.09.010
17 Mayer S, Petersmann M, Fischer F D, et al. Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing γ-TiAl based alloy [J]. Acta Mater., 2016, 115: 242
doi: 10.1016/j.actamat.2016.06.006
18 Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability [J]. Adv. Eng. Mater., 2008, 10: 707
doi: 10.1002/adem.v10:8
19 Chen R R, Fang H Z, Chen X Y, et al. Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths [J]. Intermetallics, 2017, 81: 9
doi: 10.1016/j.intermet.2017.02.025
20 Sun F S, Cao C X, Yan M G, et al. Alloying mechanism of beta stabilizers in a TiAl alloy [J]. Metall. Mater. Trans., 2001, 32A: 1573
21 Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 777
张永刚, 韩雅芳, 陈国良 等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 777
22 Schmoelzer T, Mayer S, Sailer C, et al. In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44at%Al-(3-7)at%Mo alloys [J]. Adv. Eng. Mater., 2011, 13: 306
doi: 10.1002/adem.v13.4
23 Xu M, Zhang S Z, Zhao Y, et al. Effects of alloying element on the heat-treated microstructure based on β/γ TiAl [J]. Rare Met. Mater. Eng., 2019, 48(1): 183
徐 萌, 张树志, 赵 宇 等. 合金元素对β-γ TiAl合金热处理组织的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 183
24 Yu T H, Koo C H. Microstructural evolution of a hot-rolled Ti-40Al-10Nb alloy [J]. Mater. Sci. Eng., 1997, A239-240: 694
25 Stark A, Oehring M, Pyczak F, et al. In situ observation of various phase transformation paths in Nb-rich TiAl alloys during quenching with different rates [J]. Adv. Eng. Mater., 2011, 13: 700
doi: 10.1002/adem.v13.8
26 Schloffer M, Rashkova B, Schöberl T, et al. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness [J]. Acta Mater., 2014, 64: 241
doi: 10.1016/j.actamat.2013.10.036
27 Tang H J, Xing W W, Li X B, et al. Insights into the gradient-characteristic precipitation behaviors of Laves phase induced by Fe/W/Mo addition in Ti42Al5Mn alloy [J]. Intermetallics, 2021, 128: 107022
doi: 10.1016/j.intermet.2020.107022
28 Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations [J]. Intermetallics, 2005, 13: 993
doi: 10.1016/j.intermet.2004.12.014
29 Singh V, Mondal C, Sarkar R, et al. Effects of Cr alloying on the evolution of solidification microstructure and phase transformations of high-Nb containing γ-TiAl based alloys [J]. Intermetallics, 2021, 131: 107117
doi: 10.1016/j.intermet.2021.107117
30 Chen G, Chen F R, Qi Z X, et al. PST TiAl single crystal and its application prospect [J]. J. Vib. Meas. Diag., 2019, 39: 915
陈 光, 陈奉锐, 祁志祥 等. 聚片孪生TiAl单晶及其应用展望 [J]. 振动、测试与诊断, 2019, 39: 915
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[7] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[8] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[9] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[10] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[12] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[13] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[14] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
No Suggested Reading articles found!