Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1535-1540    DOI: 10.3724/SP.J.1037.2011.00369
论文 Current Issue | Archive | Adv Search |
CHARACTERIZATIONS OF DLC/MAO COMPOSITE COATINGS ON AZ80 MAGNESIUM ALLOY
YANG Wei1, WANG Aiying1, KE Peiling1,JIANG Bailing2
1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
2.School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
Cite this article: 

. CHARACTERIZATIONS OF DLC/MAO COMPOSITE COATINGS ON AZ80 MAGNESIUM ALLOY. Acta Metall Sin, 2011, 47(12): 1535-1540.

Download:  PDF(768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Diamond–like carbon (DLC) coating has been widely used to modify the surface mechanical and tribological properties of materials. In most cases, a metallic buffer (e.g., Ti) is used as an interlayer between DLC coating and the substrate to improve the adhesion. In this work, the DLC coating was deposited on the AZ80 Mg alloy substrate using ion beam deposition technique. Specially, a pretreatment of microarc oxidation (MAO) was applied to the Mg alloy substrates to form the DLC/MAO composite coating instead of the metallic interlayer process. As a comparation, the DLC/Ti/MAO and DLC/Ti composite coatings were also deposited on the substrates. The surface morphology and roughness, mechanical, tribological and corrosion properties of the as–deposited coatings were studied. The results indicated that the DLC/MAO composite coating could significantly improved the hardness and wear resistance of the Mg alloy substrates compared with the MAO monolayer. Although the surface roughness of the DLC/MAO coating showed an increase due to the micropores of the MAO coating surface, the friction coefficient and the wear tracks exhibited a similar behavior to that of the DLC/Ti coating. Furthermore, the DLC/Ti/MAO/AZ80 system showed the best tribological properties among the current experimental samples. Meanwhile, the polarization curve revealed that the corrosion resistance of the MAO/AZ80, DLC/MAO/AZ80 and DLC/Ti/MAO/AZ80 film–substrate systems was greatly improved due to the existence of the MgO structure, which processed the high polarization resistance.
Key words:  compact strip production (CSP)      Ti microalloyed steel      strengthening mechanism      mechanical property     
Received:  15 June 2011     
ZTFLH: 

TG146.2

 
Fund: 

Supported by National Natural Science Foundation of China (No.51072205) and Ningbo Municipal Natural Science Foundation (No.201101A6105005)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00369     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1535

[1] Guo J, Wang L P, Liang J, Xue Q J, Yan F Y. J Alloys Compd, 2009; 481: 903

[2] Wang XM,WuWD, Li S Y, Chen S L, Tang Y J, Bai L, Wang H P. Rare Met Mater Eng, 2010; 39: 1251

(王雪敏, 吴卫东, 李盛印, 陈松林, 唐永建, 白黎, 王海平. 稀有金属材料与工程, 2010; 39: 1251)

[3] Li H K, Lin G Q, Dong C. Chin J Inorg Chem, 2010; 25:517

(李红凯, 林国强, 董闯. 无机材料学报, 2010; 25: 517)

[4] Robertson J. Surf Coat Technol, 1992; 50: 185

[5] Cruz R, Rao J, Rose T, Lawson K, Nicholls J R. Diamond Relat Mater, 2006; 15: 2055

[6] Yoshihiko U, Toshifumi K, Takema T, Yoshio H, Keiro T. Surf Coat Technol, 2011; 205: 2778

[7] Davis C A. Thin Solid Film, 1993; 226: 30

[8] Funada Y, Awazu K, Yasui H, Sugita T. Surf Coat Technol, 2000; 129: 308

[9] McKenzie D R, Muller D, Pailthorpe B A. Phys Rev Lett, 1991; 67: 773

[10] Sheeja D, Tay B K, Nung L N. Surf Coat Technol, 2005; 190: 231

[11] Wu G S, Sun L L, Dai W, Song L X, Wang A Y. Surf Coat Technol, 2010; 204: 2193

[12] Yamauchi N, Ueda N, Cuong N K, Sone T, Hirose Y. Surf Coat Technol, 2005; 193: 277

[13] Choi J, Nakao S, Kim J, Ikeyama M, Kato T. Diamond Relat Mater, 2007; 16: 1361

[14] Yamauchi N, Ueda N, Okamoto A, Sone T, Tsujikawa M, Oki S. Surf Coat Technol, 2007; 201: 4913

[15] Wu G S, Dai W, Zheng H, Wang A Y. Surf Coat Technol, 2010; 205: 2067

[16] Yoon S F, Yang H, Ahn R J, Zhang Q. Vacuum, 1998; 49: 67

[17] Xue W B, Jin Q, Zhu Q Z, Hua M, Ma Y Y. J Alloys Compd, 2009; 482: 208

[18] Wang Y M, Guo L X, Ouyang J H, Zhou Y, Jia D C. Appl Surf Sci, 2009; 255: 6875

[19] Liang J, Hu L T, Hao J F. Appl Surf Sci, 2007; 253: 6939

[20] Dorner–Reisel A, Schurer C, Irmer G, Muller E. Surf Coat Technol, 2004; 177–178: 830

[21] Barchiche C E, Rocca E, Hazan J. Surf Coat Technol, 2008; 202: 4145

[22] Statuti R P C C, Radi P A, Santos L V, Trava–Airoldi V J. Wear, 2009; 267: 1208

[23] Topolovec–Miklozic K, Lockwood F, Spikes H. Wear, 2008; 265: 1893

[24] Yan X B, Xu T, Chen G, Yang S G, Liu H W. Appl Surf Sci, 2004; 236: 328

[25] Suzuki M, Ohana T, Tanaka A. Diamond Relat Mater, 2004; 13: 2216

[26] Ikeyama M, Nakao S, Sonoda T, Choi J. Nuclear Instrum Methods Phys Res, 2009; 267B: 1675
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
No Suggested Reading articles found!