Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (3): 257-276    DOI: 10.3724/SP.J.1037.2009.00748
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING
WU Shiding; AN Xianghai; HAN Weizhong; QU Shen; ZHANG Zhefeng
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

WU Shiding AN Xianghai HAN Weizhong QU Shen ZHANG Zhefeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING. Acta Metall Sin, 2010, 46(3): 257-276.

Download:  PDF(2892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure evolution, grain refinement mechanism and mechanical properties of face-centered cubic (fcc) metallic materials, subjected to equal channel angular pressing (ECAP), were systematically investigated. According to the special shear deformation mode of ECAP, Al single crystals with different orientations and Cu bicrystals with different initial grain boundary directions were subjected to ECAP for one pass, and it is found that shear deformations both parallel and perpendicular to intersection plane play important roles in the ECAP process. Moreover, Al single crystals, Cu single crystals and polycrystalline Cu-3%Si (mass fraction) alloy with different stacking fault energies (SFEs) and special crystallographic orientations, subjected to ECAP for one pass, were selected to experimentally and analytically explore the combined effects of crystallographic orientation, SFE and grain size on deformation twinning behaviors in several fcc crystals. Furthermore, ultrafine grained (UFG) or nanocrystalline (NC) Cu-Al alloys with different Al contents were prepared using multiple-passes ECAP. The results show that the grain refinement mechanism is gradually transformed from dislocation subdivision to twin fragmentation, and the equilibrium grain size decreases with lowering the SFE of Cu-Al alloys. Meanwhile, the homogeneous microstructures of materials with high or low SFE are much more readily gained than those of medium-SFE metals. More significantly, the strength and uniform elongation can be simultaneously improved with lowering the SFE, i.e., the better strength-ductility combination is achieved in the Cu-Al alloy with lower SFE.

Key words:  equal channel angular pressing      fcc metal      microstructure      grain refinement      mechanical property     
Received:  10 November 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50171072, 50571102, 50625103, 50890173, 50841024 and 50931005)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00748     OR     https://www.ams.org.cn/EN/Y2010/V46/I3/257

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Valiev R Z, Korznikov A V, Mulyukov R R. Mater Sci Eng, 1993; A168: 141
[5] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[6] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[7] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Acta Mater, 1999; 47: 579
[8] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[9] Cui G R, Ma Z Y, Li S X. Acta Mater, 2009; 57: 5718
[10] Segal V M. Mater Sci Eng, 1995; A197: 157
[11] Segal V M. Mater Sci Eng, 2003; A345: 36

[12] Wang Z G, Wu S D, Jiang C B, Liu S M, Alexandrov I V. Proc Fatigue, vol.3, West Midlands: Engineering Advisory Services, 2002: 1541
[13] Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon T G. Mater Sci Eng, 2006; A420: 79
[14] Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon T G. Acta Mater, 2004; 52: 1387
[15] Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S. Philos Mag Lett, 2004; 84: 235
[16] Zhu Y T, Lowe T C. Mater Sci Eng, 2000; A291: 46
[17] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[18] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[19] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[20] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[21] Wang Y M, Ma E. Acta Mater, 2004; 52: 1699
[22] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[23] Han W Z. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(韩卫忠. 中国科学院金属研究所博士论文, 沈阳, 2008)

[24] Qu S. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
(屈伸. 中国科学院金属研究所博士论文, 沈阳, 2009)

[25] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J
Mater Res, 2009: 24: 3636
[26] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, submitted
[27] Han W Z, Zhang Z F, Wu S D, Li S X. Acta Mater, 2007;
55: 5889
[28] Han W Z, Yang H J, An X H, Yang R Q, Li S X, Wu S
D, Zhang Z F. Acta Mater, 2009; 57: 1132
[29] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[30] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[31] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter
H. Acta Mater, 2001; 49: 2713
[32] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008;
88: 3011
[33] Han W Z, Wu S D, Li S X, Zhang Z F. Appl Phys Lett,
2008; 92: 221909
[34] Han W Z, Cheng G M, Li S X, Wu S D, Zhang Z F. Phys
Rev Lett, 2008; 101: 115505
[35] Han W Z, Wu S D, Huang C X, Li S X, Zhang Z F. Adv
Eng Mater, 2008; 10: 1110
[36] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[37] Venables J A. Philos Mag, 1961; 6: 379
[38] Hang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X.
Acta Mater, 2006; 54: 655
[39] Hirth J P, Lothe J. Theory of Dislocations. 2 Ed., John
Wiley & Son Inc., Canada, 1982: 1
[40] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt
D M, Mao S X. Science, 2004; 305: 654
[41] Van Swygenhoven H. Science, 2002; 296: 66
[42] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q
S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57:
1586
[43] Komura S, Horita Z, Nemoto M. J Mater Res, 1999; 14:
4044
[44] Zhilyaev A P, Kim B K, Szpunar J A. Mater Sci Eng,
2005; A391: 377
[45] Mohamed F A. Acta Mater, 2003; 51: 4107
[46] Balogh L, Ung´ar T, Zhao Y H, Zhu Y T, Horita Z, Xu C,
Langdon T G. Acta Mater, 2008; 56: 809
[47] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304:
422
[48] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[49] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005;
52: 989
[50] Li Y S, Zhang Y, Tao N R, Lu K. Acta Mater, 2009; 57:
761

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!