Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (3): 257-276    DOI: 10.3724/SP.J.1037.2009.00748
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING
WU Shiding; AN Xianghai; HAN Weizhong; QU Shen; ZHANG Zhefeng
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Download:  PDF(2892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure evolution, grain refinement mechanism and mechanical properties of face-centered cubic (fcc) metallic materials, subjected to equal channel angular pressing (ECAP), were systematically investigated. According to the special shear deformation mode of ECAP, Al single crystals with different orientations and Cu bicrystals with different initial grain boundary directions were subjected to ECAP for one pass, and it is found that shear deformations both parallel and perpendicular to intersection plane play important roles in the ECAP process. Moreover, Al single crystals, Cu single crystals and polycrystalline Cu-3%Si (mass fraction) alloy with different stacking fault energies (SFEs) and special crystallographic orientations, subjected to ECAP for one pass, were selected to experimentally and analytically explore the combined effects of crystallographic orientation, SFE and grain size on deformation twinning behaviors in several fcc crystals. Furthermore, ultrafine grained (UFG) or nanocrystalline (NC) Cu-Al alloys with different Al contents were prepared using multiple-passes ECAP. The results show that the grain refinement mechanism is gradually transformed from dislocation subdivision to twin fragmentation, and the equilibrium grain size decreases with lowering the SFE of Cu-Al alloys. Meanwhile, the homogeneous microstructures of materials with high or low SFE are much more readily gained than those of medium-SFE metals. More significantly, the strength and uniform elongation can be simultaneously improved with lowering the SFE, i.e., the better strength-ductility combination is achieved in the Cu-Al alloy with lower SFE.

Key words:  equal channel angular pressing      fcc metal      microstructure      grain refinement      mechanical property     
Received:  10 November 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50171072, 50571102, 50625103, 50890173, 50841024 and 50931005)

Corresponding Authors:  ZHANG Zhefeng     E-mail:  anxianghai@gmail.com

Cite this article: 

WU Shiding AN Xianghai HAN Weizhong QU Shen ZHANG Zhefeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF FCC METALLIC MATERIALS SUBJECTED TO EQUAL CHANNEL ANGULAR PRESSING. Acta Metall Sin, 2010, 46(3): 257-276.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00748     OR     https://www.ams.org.cn/EN/Y2010/V46/I3/257

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Valiev R Z, Korznikov A V, Mulyukov R R. Mater Sci Eng, 1993; A168: 141
[5] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[6] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[7] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Acta Mater, 1999; 47: 579
[8] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[9] Cui G R, Ma Z Y, Li S X. Acta Mater, 2009; 57: 5718
[10] Segal V M. Mater Sci Eng, 1995; A197: 157
[11] Segal V M. Mater Sci Eng, 2003; A345: 36

[12] Wang Z G, Wu S D, Jiang C B, Liu S M, Alexandrov I V. Proc Fatigue, vol.3, West Midlands: Engineering Advisory Services, 2002: 1541
[13] Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon T G. Mater Sci Eng, 2006; A420: 79
[14] Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon T G. Acta Mater, 2004; 52: 1387
[15] Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S. Philos Mag Lett, 2004; 84: 235
[16] Zhu Y T, Lowe T C. Mater Sci Eng, 2000; A291: 46
[17] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[18] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[19] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[20] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[21] Wang Y M, Ma E. Acta Mater, 2004; 52: 1699
[22] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[23] Han W Z. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(韩卫忠. 中国科学院金属研究所博士论文, 沈阳, 2008)

[24] Qu S. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
(屈伸. 中国科学院金属研究所博士论文, 沈阳, 2009)

[25] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J
Mater Res, 2009: 24: 3636
[26] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, submitted
[27] Han W Z, Zhang Z F, Wu S D, Li S X. Acta Mater, 2007;
55: 5889
[28] Han W Z, Yang H J, An X H, Yang R Q, Li S X, Wu S
D, Zhang Z F. Acta Mater, 2009; 57: 1132
[29] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[30] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[31] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter
H. Acta Mater, 2001; 49: 2713
[32] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008;
88: 3011
[33] Han W Z, Wu S D, Li S X, Zhang Z F. Appl Phys Lett,
2008; 92: 221909
[34] Han W Z, Cheng G M, Li S X, Wu S D, Zhang Z F. Phys
Rev Lett, 2008; 101: 115505
[35] Han W Z, Wu S D, Huang C X, Li S X, Zhang Z F. Adv
Eng Mater, 2008; 10: 1110
[36] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[37] Venables J A. Philos Mag, 1961; 6: 379
[38] Hang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X.
Acta Mater, 2006; 54: 655
[39] Hirth J P, Lothe J. Theory of Dislocations. 2 Ed., John
Wiley & Son Inc., Canada, 1982: 1
[40] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt
D M, Mao S X. Science, 2004; 305: 654
[41] Van Swygenhoven H. Science, 2002; 296: 66
[42] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q
S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57:
1586
[43] Komura S, Horita Z, Nemoto M. J Mater Res, 1999; 14:
4044
[44] Zhilyaev A P, Kim B K, Szpunar J A. Mater Sci Eng,
2005; A391: 377
[45] Mohamed F A. Acta Mater, 2003; 51: 4107
[46] Balogh L, Ung´ar T, Zhao Y H, Zhu Y T, Horita Z, Xu C,
Langdon T G. Acta Mater, 2008; 56: 809
[47] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304:
422
[48] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[49] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005;
52: 989
[50] Li Y S, Zhang Y, Tao N R, Lu K. Acta Mater, 2009; 57:
761

[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[6] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[7] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[13] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[14] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[15] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
No Suggested Reading articles found!