Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 184-188    DOI: 10.3724/SP.J.1037.2009.00474
论文 Current Issue | Archive | Adv Search |
EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY
MO Defeng1; HE Guoqiu1; HU Zhengfei1; LIU Xiaoshan1; ZHANG Weihua2
1.School of Materials Science and Engineering; Tongji University; Shanghai 200092
2.State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
Cite this article: 

MO Defeng HE Guoqiu HU Zhengfei LIU Xiaoshan ZHANG Weihua. EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY. Acta Metall Sin, 2010, 46(2): 184-188.

Download:  PDF(1323KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Strain hardening exponent (n) of a material is an important parameter reflecting its hardening property whose determination is of great importance. It has a widely application in material scientific research and engineering fields such as fatigue life prediction, stress–concentration–factor calculation, etc.. The value of strain hardening exponent varies with their microstructures in cast aluminum alloys, but a few theoretical and experimental investigations have been reported to understand the effects of the microstructural parameters on the strain hardening exponent in these alloys till now. In the present study, the influence of secondary dendrite arm spacing (SADS), aspect ratio and volume fraction of particles on internal stress in aluminum alloys were discussed, and a quantitative prediction of strain hardening exponnt was established on the basis of Hollomon and internal stress equations. It shows tat the strain hardening exponent represents their hardening ability in relatively large plastic deformation (larger than the upper limit for the no plastic relaxation regime). A new microstructural hardening parameter relatively to strain hardening exponent was defined. Besides, a group of A319 cast aluminum alloys with microstructural heterogeneities were tested. The calculated strain hardening exponents are in agreement with the experimental ones in A319 alloy as well as in some commonly used cast aluminum alloys. For the same grade of alloys, the microstructural hardening parameter and strain hardening exponent are quite sensitive to SDAS and particle aspect ratio while the influence of volume fraction of particles is reltivey little. As the values of SDAS and aspect ratio of particles increse, the vlue of te strain harening exponent decreases. A lier reltionship between microstructural hardeig parameter and strain hardening exponent was proposd. For A319 and A356/57 alloys, the optimum correctin coefficients are 0.17 and 0.11, respectively, and the mean prediction error of n is only bout 10%.

Key words:  cast aluminum alloy      strain hardening exponent      microstuctural hardening parameter      microstructure     
Received:  13 July 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50771073) and National Basic Research Program of China (No.2007CB714705)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00474     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/184

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Wang Q G. Metall Mater Trans, 2004; A35: 2707
[3] C´aceres C H, Selling B I. Mater Sci Eng, 1996; A220: 109
[4] Fatahalla N, Hafiz M, Abdulkhalek M. J Mater Sci, 1999; 34: 3555
[5] Wang Q G. Metall Mater Trans, 2003; 34A: 2887
[6] Han Y, Chen S J. Phys Test Chem Anal (Phys Test), 2003; 39: 555
(韩茵, 陈诗键. 理化检验(物理分册), 2003; 39: 555)
[7] Hu Z Z, Cao S Z. J Xi’an Jiaotong Univ, 1993; 27: 71
(胡志忠, 曹淑珍. 西安交通大学学报, 1993; 27: 71)
[8] Morrison W B. Trans ASM, 1996; 59: 824
[9] Antoine P, Vandeputte S, Vogt J B. Mater Sci Eng, 2006; A433: 55
[10] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[11] Sandor B I ed., transl. by Yu J L. Fundamentals of Cyclic Stress and Strain. Beijing: Science Press, 1985: 59
(Sandor B I著, 俞炯亮译. 循环应力与循环应变的基本原理. 北京:科学出版社, 1985: 59)
[12] Suresh S ed., transl. by Wang Z G. Fatigue of Materials. 2nd Ed., Beijing: National Defence Industry Press, 1999: 218
(Suresh S著; 王中光译. 材料的疲劳(第2版). 北京: 国防工业出版社, 1999: 218)
[13] Ebrahimi R, Pardisa N. Mater Sci Eng, 2009; A518: 56
[14] Mo D F, He G Q, Hu Z F, Zhu Z Y, Chen C S, Zhang W H. Int J Fatigue, 2008; 30: 1843
[15] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 85
[16] Ovono Ovono D, Guillot I, Massinon D. J Alloys Compd, 2008; 452: 425
[17] Sowerby R, Uko D K, Tomita Y. Mater Sci Eng, 1979; 41: 43
[18] Brown L M, Clarke D R. Acta Metall, 1975; 23: 821
[19] Han C S, Wagonera R H, Barlat F. Int J Plast, 2004; 20: 477
[20] Brown L M. Acta Metall, 1973; 21: 879
[21] Hansen N. Acta Metall, 1977; 25: 863
[22] Ashby M F. Philos Mag, 1970; 21: 399
[23] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[24] Caceres C H, Griffiths J R. Acta Mater, 1996; 44: 25
[25] Kleemola H J, Nieminen M A. Metall Mater Trans, 1974; 5B: 1863
[26] Hutchinson J W, Obrecht H. Fracture, 1977; 1: 101
[27] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 73

[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!