Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 184-188    DOI: 10.3724/SP.J.1037.2009.00474
论文 Current Issue | Archive | Adv Search |
MO Defeng1; HE Guoqiu1; HU Zhengfei1; LIU Xiaoshan1; ZHANG Weihua2
1.School of Materials Science and Engineering; Tongji University; Shanghai 200092
2.State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
Download:  PDF(1323KB) 
Export:  BibTeX | EndNote (RIS)      

Strain hardening exponent (n) of a material is an important parameter reflecting its hardening property whose determination is of great importance. It has a widely application in material scientific research and engineering fields such as fatigue life prediction, stress–concentration–factor calculation, etc.. The value of strain hardening exponent varies with their microstructures in cast aluminum alloys, but a few theoretical and experimental investigations have been reported to understand the effects of the microstructural parameters on the strain hardening exponent in these alloys till now. In the present study, the influence of secondary dendrite arm spacing (SADS), aspect ratio and volume fraction of particles on internal stress in aluminum alloys were discussed, and a quantitative prediction of strain hardening exponnt was established on the basis of Hollomon and internal stress equations. It shows tat the strain hardening exponent represents their hardening ability in relatively large plastic deformation (larger than the upper limit for the no plastic relaxation regime). A new microstructural hardening parameter relatively to strain hardening exponent was defined. Besides, a group of A319 cast aluminum alloys with microstructural heterogeneities were tested. The calculated strain hardening exponents are in agreement with the experimental ones in A319 alloy as well as in some commonly used cast aluminum alloys. For the same grade of alloys, the microstructural hardening parameter and strain hardening exponent are quite sensitive to SDAS and particle aspect ratio while the influence of volume fraction of particles is reltivey little. As the values of SDAS and aspect ratio of particles increse, the vlue of te strain harening exponent decreases. A lier reltionship between microstructural hardeig parameter and strain hardening exponent was proposd. For A319 and A356/57 alloys, the optimum correctin coefficients are 0.17 and 0.11, respectively, and the mean prediction error of n is only bout 10%.

Key words:  cast aluminum alloy      strain hardening exponent      microstuctural hardening parameter      microstructure     
Received:  13 July 2009     

Supported by National Natural Science Foundation of China (No.50771073) and National Basic Research Program of China (No.2007CB714705)

Corresponding Authors:  HE Guoqiu     E-mail:

Cite this article: 


URL:     OR

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Wang Q G. Metall Mater Trans, 2004; A35: 2707
[3] C´aceres C H, Selling B I. Mater Sci Eng, 1996; A220: 109
[4] Fatahalla N, Hafiz M, Abdulkhalek M. J Mater Sci, 1999; 34: 3555
[5] Wang Q G. Metall Mater Trans, 2003; 34A: 2887
[6] Han Y, Chen S J. Phys Test Chem Anal (Phys Test), 2003; 39: 555
(韩茵, 陈诗键. 理化检验(物理分册), 2003; 39: 555)
[7] Hu Z Z, Cao S Z. J Xi’an Jiaotong Univ, 1993; 27: 71
(胡志忠, 曹淑珍. 西安交通大学学报, 1993; 27: 71)
[8] Morrison W B. Trans ASM, 1996; 59: 824
[9] Antoine P, Vandeputte S, Vogt J B. Mater Sci Eng, 2006; A433: 55
[10] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[11] Sandor B I ed., transl. by Yu J L. Fundamentals of Cyclic Stress and Strain. Beijing: Science Press, 1985: 59
(Sandor B I著, 俞炯亮译. 循环应力与循环应变的基本原理. 北京:科学出版社, 1985: 59)
[12] Suresh S ed., transl. by Wang Z G. Fatigue of Materials. 2nd Ed., Beijing: National Defence Industry Press, 1999: 218
(Suresh S著; 王中光译. 材料的疲劳(第2版). 北京: 国防工业出版社, 1999: 218)
[13] Ebrahimi R, Pardisa N. Mater Sci Eng, 2009; A518: 56
[14] Mo D F, He G Q, Hu Z F, Zhu Z Y, Chen C S, Zhang W H. Int J Fatigue, 2008; 30: 1843
[15] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 85
[16] Ovono Ovono D, Guillot I, Massinon D. J Alloys Compd, 2008; 452: 425
[17] Sowerby R, Uko D K, Tomita Y. Mater Sci Eng, 1979; 41: 43
[18] Brown L M, Clarke D R. Acta Metall, 1975; 23: 821
[19] Han C S, Wagonera R H, Barlat F. Int J Plast, 2004; 20: 477
[20] Brown L M. Acta Metall, 1973; 21: 879
[21] Hansen N. Acta Metall, 1977; 25: 863
[22] Ashby M F. Philos Mag, 1970; 21: 399
[23] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[24] Caceres C H, Griffiths J R. Acta Mater, 1996; 44: 25
[25] Kleemola H J, Nieminen M A. Metall Mater Trans, 1974; 5B: 1863
[26] Hutchinson J W, Obrecht H. Fracture, 1977; 1: 101
[27] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 73

[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!