Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 161-166    DOI: 10.3724/SP.J.1037.2009.00432
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE
II. Cooling Rate After Dynamic Transformation of Undercooled Austenite
YIN Yunyang 1;3; YANG Wangyue 1; LI Longfei 2; SUN Zuqing 2; WANG Xitao 2
1. School of Materials Science and Engineering; University of Science & Technology Beijing; Beijing 100083
2. State Key Laboratory for Advanced Metals and Materials; University of Science & Technology Beijing; Beijing 100083
3. Research and Development Center; Wuhan Iron and Steel (Group) Corp.; Wuhan 430080
Cite this article: 

YIN Yunyang YANG Wangyue LI Longfei SUN Zuqing WANG Xitao . MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE
II. Cooling Rate After Dynamic Transformation of Undercooled Austenite. Acta Metall Sin, 2010, 46(2): 161-166.

Download:  PDF(1850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TRIP–aided steels are ideal for lightweight automotive applications due to their high strength and ductility. Thermomechanical processing simulations were performed by hot compression on a Gleeble–1500 machine, in order to develop a comprehensive understanding of the effect of cooling rate after dynamic transformation of undercooled austenite (DTUA) on the microstructure evolution and mechanical properties of 0.2C–1.5Mn–0.5Si–1.0Al (mass faction, %) transformation–induced plasticity (TRIP) steel. The results show that the metastable austenite would be transformed to ferrite mainly by means of nucleation during cooling after DTUA. Decreasing the cooling rate after DTUA, the vlume fraction of ferrite increase, the static recovery of dislocations in ferrite produced during dynamic transformation could fully take place, thus the density of dislocations in ferrite decreased through by rearranging and merging, but the grain size of ferrite changes little. At the cooling rate of 30℃/s, the investigated steel has a moderate volume fraction of ferrite and dislocation density in ferrite and a higher volume fraction of retained austenite, resulting in the steel having a higher strength and plasticity.

Key words:  hot rolled TRIP steel      dynamic transformation of undercooled austenite (DTUA)      cooling rate      microstructure      mechanical property     
Received:  29 June 2009     
Fund: 

Supported by National High Technology Research and Development Program of China (No.2007AA03Z501) and Specialized Research Fund for the Doctoral Program of Higher Education (No.200800081014)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00432     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/161

[1] Zackay V F, Parker E R, Fahr D, Bush R. Trans ASM, 1967; 60: 252
[2] Traint S, Pichler A, Hauzenberger K, Stiaszny P, Werner E. Steel Res, 2002; 73: 259
[3] Van der Zwaag S, Zhao L, Suzelotte O, Sietsma J. ISIJ Int, 2002; 42: 1565
[4] Sakuma Y, Matsumura O, Takechi H. Metall Trans, 1991; 22A: 489
[5] Koh H, Lee S, Park S, Choi S J, Kwon S J, Kim N J. Scr Mater, 1998; 38: 763
[6] Ryu H B, Speer J G, Wise J P. Metall Mater Trans, 2002; 33A: 2811
[7] Girault E, Mertens A, Jacques P, Houbaert Y, Verlinden B, ven Humbeeck J. Scr Mater, 2001; 44: 885
[8] Krizan D, de Cooman B C, Antonissen J. In: Baker M A ed., Int Conf on Advanced High Strength Sheet for Automotive Applications Proceedings, Winter Park, Colorado, 2004: 205
[9] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T. Acta Metall Sin, 2008; 44: 1299
(尹云洋, 杨王玥,李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1299)
[10] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T. Acta Metall Sin, 2008; 44: 686
(尹云洋, 杨王玥,李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 686)
[11] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T. Acta Metall Sin, 2010; 46: 155
(尹云洋, 杨王玥,李龙飞, 孙祖庆, 王西涛. 金属学报, 2010; 46: 155)
[12] Yang W Y, Qi J J, Zun Z Q, Yang P. Acta Metall Sin,2004; 40: 135
(杨王玥,齐俊杰, 孙祖庆, 杨平. 金属学报, 2004; 40: 135)
[13] Dong H, Sun X J. Curr Opin Solid State & Mater Sci, 2005; 9: 269
[14] Matsumura O, Sakuma Y, Takechi H. Trans ISIJ, 1987; 27: 570
[15] Hanlon D N, Sietma J, Van der Zwaag S. ISIJ Int, 2001; 41: 1028
[16] Liu Z Y, Yang Z G, Li Z D, Zhang C, Sheng G. Acta Metall Sin, 2008; 44: 703
(刘志远, 杨志刚, 李昭东, 张 弛, 盛广. 金属学报, 2008; 44: 703)
[17] Yu Y N. Fundamentals of Materials Science. Beijing: Higher Education Press, 2006: 720
(余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 720)
[18] Kim S K, Shin H C, Chung J H, Chang Y W. Inst Met Mater, 1998; 36: 151

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!