Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 161-166    DOI: 10.3724/SP.J.1037.2009.00432
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE
II. Cooling Rate After Dynamic Transformation of Undercooled Austenite
YIN Yunyang 1;3; YANG Wangyue 1; LI Longfei 2; SUN Zuqing 2; WANG Xitao 2
1. School of Materials Science and Engineering; University of Science & Technology Beijing; Beijing 100083
2. State Key Laboratory for Advanced Metals and Materials; University of Science & Technology Beijing; Beijing 100083
3. Research and Development Center; Wuhan Iron and Steel (Group) Corp.; Wuhan 430080
Download:  PDF(1850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TRIP–aided steels are ideal for lightweight automotive applications due to their high strength and ductility. Thermomechanical processing simulations were performed by hot compression on a Gleeble–1500 machine, in order to develop a comprehensive understanding of the effect of cooling rate after dynamic transformation of undercooled austenite (DTUA) on the microstructure evolution and mechanical properties of 0.2C–1.5Mn–0.5Si–1.0Al (mass faction, %) transformation–induced plasticity (TRIP) steel. The results show that the metastable austenite would be transformed to ferrite mainly by means of nucleation during cooling after DTUA. Decreasing the cooling rate after DTUA, the vlume fraction of ferrite increase, the static recovery of dislocations in ferrite produced during dynamic transformation could fully take place, thus the density of dislocations in ferrite decreased through by rearranging and merging, but the grain size of ferrite changes little. At the cooling rate of 30℃/s, the investigated steel has a moderate volume fraction of ferrite and dislocation density in ferrite and a higher volume fraction of retained austenite, resulting in the steel having a higher strength and plasticity.

Key words:  hot rolled TRIP steel      dynamic transformation of undercooled austenite (DTUA)      cooling rate      microstructure      mechanical property     
Received:  29 June 2009     
Fund: 

Supported by National High Technology Research and Development Program of China (No.2007AA03Z501) and Specialized Research Fund for the Doctoral Program of Higher Education (No.200800081014)

Corresponding Authors:  YANG Wangyue     E-mail:  yinyyyang@sina.com

Cite this article: 

YIN Yunyang YANG Wangyue LI Longfei SUN Zuqing WANG Xitao . MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE
II. Cooling Rate After Dynamic Transformation of Undercooled Austenite. Acta Metall Sin, 2010, 46(2): 161-166.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00432     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/161

[1] Zackay V F, Parker E R, Fahr D, Bush R. Trans ASM, 1967; 60: 252
[2] Traint S, Pichler A, Hauzenberger K, Stiaszny P, Werner E. Steel Res, 2002; 73: 259
[3] Van der Zwaag S, Zhao L, Suzelotte O, Sietsma J. ISIJ Int, 2002; 42: 1565
[4] Sakuma Y, Matsumura O, Takechi H. Metall Trans, 1991; 22A: 489
[5] Koh H, Lee S, Park S, Choi S J, Kwon S J, Kim N J. Scr Mater, 1998; 38: 763
[6] Ryu H B, Speer J G, Wise J P. Metall Mater Trans, 2002; 33A: 2811
[7] Girault E, Mertens A, Jacques P, Houbaert Y, Verlinden B, ven Humbeeck J. Scr Mater, 2001; 44: 885
[8] Krizan D, de Cooman B C, Antonissen J. In: Baker M A ed., Int Conf on Advanced High Strength Sheet for Automotive Applications Proceedings, Winter Park, Colorado, 2004: 205
[9] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T. Acta Metall Sin, 2008; 44: 1299
(尹云洋, 杨王玥,李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1299)
[10] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T. Acta Metall Sin, 2008; 44: 686
(尹云洋, 杨王玥,李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 686)
[11] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T. Acta Metall Sin, 2010; 46: 155
(尹云洋, 杨王玥,李龙飞, 孙祖庆, 王西涛. 金属学报, 2010; 46: 155)
[12] Yang W Y, Qi J J, Zun Z Q, Yang P. Acta Metall Sin,2004; 40: 135
(杨王玥,齐俊杰, 孙祖庆, 杨平. 金属学报, 2004; 40: 135)
[13] Dong H, Sun X J. Curr Opin Solid State & Mater Sci, 2005; 9: 269
[14] Matsumura O, Sakuma Y, Takechi H. Trans ISIJ, 1987; 27: 570
[15] Hanlon D N, Sietma J, Van der Zwaag S. ISIJ Int, 2001; 41: 1028
[16] Liu Z Y, Yang Z G, Li Z D, Zhang C, Sheng G. Acta Metall Sin, 2008; 44: 703
(刘志远, 杨志刚, 李昭东, 张 弛, 盛广. 金属学报, 2008; 44: 703)
[17] Yu Y N. Fundamentals of Materials Science. Beijing: Higher Education Press, 2006: 720
(余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 720)
[18] Kim S K, Shin H C, Chung J H, Chang Y W. Inst Met Mater, 1998; 36: 151

[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[7] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[13] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
No Suggested Reading articles found!