Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1105-1110     DOI:
Research Articles Current Issue | Archive | Adv Search |
Preparation of Ti(CxN1-x) thick films on titanium by plasma electrolytic carbonitriding
;;;
新疆大学机械工程学院
Cite this article: 

;. Preparation of Ti(CxN1-x) thick films on titanium by plasma electrolytic carbonitriding. Acta Metall Sin, 2008, 44(9): 1105-1110 .

Download:  PDF(2633KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ABSTRACT Porous nanocrystalline Ti(CxN1-x) thick films which firmly bond to the substrate were obtained on commercially pure titanium by plasma electrolytic carbonitriding. The evolutions of the microstructure and phase compositions of the PECN modified layers with the treatment time were investigated. The results show that the thickness, ratios of C/N and pores sizes of the Ti(CxN1-x) films tend to increase with the discharge time. When discharge-treated for 150 minutes, the film is about 15 冚m thick and exhibits nanocrystalline characterization with grain size of 40-60 nm. The TiH2-riched layer which was induced by the permeation of hydrogen during the PECN locates beneath the Ti(CxN1-x) film, and it can be completely removed by subsequent vacuum annealing treatment while the composition and the surface morphology of the Ti(CxN1-x) film keep unchanged.
Key words:  Plasma electrolytic carbonitriding      titanium      Ti(CxN1-x) films      
Received:  14 January 2008     
ZTFLH:  TG174.44  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1105

[1]Teixeira V.Thin Solid Films,2001;392:276
[2]Masaya T,Hideyuki K,Yoichi T,Naoichi Y.J Mater Synth Process,1998;6:215
[3]Kaestner P,Olfe J.Surf Coat Technol,2001;142 144:928
[4]Branko S,Damir K,Natasa B,Milan R.Surf Sci,2004; 566-568:40
[5]Fouquet V,Pichon L,Straboni A,Drouet M.Surf Coat Technol,2004;186:34
[6]Matsuura K,Kudoh M.Acta Mater,2002;50:2693
[7]Fouquet V,Pichon L,Drouet M,Straboni A.Appl Surf Sci,2004;221:248
[8]Masaya T,Yoichi T,Naoichi Y.Plasmas Ions,2000;3:33
[9]Guu Y Y,Lin J F.Surf Coat Technol,1996;85:146
[10]Posti E,Nieminen I.Mater Manuf Process,1989;4:239
[11]Yerokhin A L,Nie X,Leyland A,Matthews A,Dowey S J.Surf Coat Technol,1999;122:73
[12]Yerokhin A L,Nie X,Leyland A,Matthews A.Surf Coal Technol,2000;130:195
[13]Li X M,Han Y.Electrochem Commun,2006;8:267
[14]Han Y,Hong S H,Xu K W.Surf Coat Technol,2002;168: 249
[15]Han Y,Hong S H,Xu K W.Surf Coat Technol,2003;154: 314
[16]Kerr W R.Metall Trans,1985;16A:1077
[17]Senkov O N,Jonas J J.Metall Mater Trans,1996;27A: 1877
[18]Cui C J,Pcng Q.Rare Met Mater Eng,2003;32:1011 (崔昌军,彭乔.稀有金属材料与工程,2003;32:1011)
[19]Luppo M I,Politi A,Vigna G.Acta Mater,2005;53:4987
[20]Alefeld G,Bolke J.Hydrogen in Metals.Berlin:Springer, 1978:1
[21]Li X Y,Li Y Y.Hydrogen Damage of Austenite Alloy. Beijing:Science Press,2003:1 (李秀艳,李依依.奥氏体合金的氢损伤.北京:科学出版社,2003:1)
[22]Zhang S Q,Zhao I R.J Alloy Compd,1995;218:223
[23]Toshio F,Kazutoshi S,Hiroshi S.In:Kimura H,Lzuml O, eds.,Titanium'80 Science and Technology,Warrendale, PA:AIME,1980:2682
[24]Kohn D H,Ducheyne P.J Mater Sci,1991;26:534
[25]Arbuzov V L.J Nucl Mater,1995;233 237:442
[26]Harald S,Maziar S F.Mater Sci Eng,1998;A248:73
[27]Soltani F M,Baumann H,Ruck D,Bethge K.Nucl In- strum Methods,1997,127/128B:787
[28]Checchetto R,Bonelli M,Gratton L M,Miotello A,Sab- bioni A,Guzman L,Horino Y,Benamati G.Surf Coat Technol,1996;83:40
[29]Karlsson L,Hultman L,Johansson M P.Surf Coat Tech- nol,2000;126:1
[30]Writz G P,Brown S D,Kriven W M.Mater Manuf Pro- cess,1991;6:87
[31]Han Y,Xu K W.J Inorg Mater,2001;16:951 (憨勇,徐可为.无机材料学报,2001;16:951)
[32]Zhang C B,Kang Q,Lai Z H.Acta Mater,1996;44:1077
[33]Senkov J J.Metall Mater Trans,1996;27:18692
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[9] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[10] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[14] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[15] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
No Suggested Reading articles found!