Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (9): 1275-1285    DOI: 10.11900/0412.1961.2020.00027
Current Issue | Archive | Adv Search |
Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites
WANG Chao1,2, ZHANG Xu1(), WANG Yumin1(), YANG Qing1, YANG Lina1, ZHANG Guoxing1, WU Ying1, KONG Xu1, YANG Rui1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Download:  HTML  PDF(3055KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Continuous silicon carbide (SiC) ?ber-reinforced titanium metal-matrix composites (TMCs) are potential candidates for high temperature application in jet engines because of their high specific strength and stiffness. However, severe interfacial reactions caused by high temperature manufacture and service have a detrimental effect on the mechanical properties of composites. Furthermore, the phase transition occurred in matrix at elevated temperature is unfavorable to the properties. In this work, the interfacial reaction, matrix phase transformation and thermal stability of SiCf /Ti65 composites were investigated. The composites were prepared by the combination of magnetron sputtering and hot isostatic pressing (HIP) method. Matrix-coated precursor wires prepared by sputtering were aligned, degased and encapsulated, then consolidated by HIP. And the densified composites were subjected to long-term thermal exposure at 650, 750, 800 and 900 ℃, respectively. Reaction products and element diffusion of SiCf /Ti65 composites in different conditions were studied. The results show that the elements diffuse and participate in both interfacial reaction and matrix phase transition during HIP and thermal exposure process. In the as-processed SiCf /Ti65 composites, TiC is the main product of interfacial reaction layer, and (Zr, Nb)5Si4 is the product of matrix phase transition. With the continuous consumption of C-coating layer in the process of thermal exposure, Ti5Si3 and (Zr, Nb)5Si4 form in the interfacial reaction layer, while Ti3(Al, Sn)C and TiC precipitate in the matrix. The results of thermal stability study indicate a parabolic correlation between interfacial reaction layer thickness and exposure time, and the activation energy of reaction layer growth estimated by Arrhenius equation is 93 kJ/mol. The interface of SiCf /Ti65 composites is stable below 650 ℃.

Key words:  titanium matrix composites      SiC fiber      interfacial reaction      element diffusion      matrix phase transition     
Received:  17 January 2020     
ZTFLH:  TG146.23  
Corresponding Authors:  ZHANG Xu,WANG Yumin     E-mail:  xuzhang@imr.ac.cn;yuminwang@imr.ac.cn

Cite this article: 

WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites. Acta Metall Sin, 2020, 56(9): 1275-1285.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00027     OR     https://www.ams.org.cn/EN/Y2020/V56/I9/1275

Fig.1  Cross section SEM image of the as-processed SiCf/Ti65 composites
Fig.2  Low magnified cross section BS-SEM image (a) and high magnified cross section SEM image (b) of the as-processed SiCf /Ti65 composites
Fig.3  SEM image and EDS elemental mapping in the fiber/matrix interfacial reaction zone for the as-processed SiCf /Ti65 composites
Fig.4  XRD spectra of the as-processed SiCf /Ti65 composites
Fig.5  TEM image of the interfacial reaction zone for the as-processed SiCf /Ti65 sample (a) and the SAED patterns corresponding to zones b~i in Fig.5a (b~i), respectively
Fig.6  SEM images of the interfacial reaction layer and matrix for SiCf /Ti65 composites under different thermal exposure conditions
Fig.7  SEM image and EDS elemental mapping in the fiber/matrix interfacial reaction zone for SiCf /Ti65 composites exposed at 900 ℃ and 200 h
Fig.8  XRD spectra of SiCf /Ti65 composites under different thermal exposure conditions
Fig.9  TEM image of the interfacial reaction zone for the SiCf /Ti65 composite after 900 ℃ and 200 h thermal exposure (a) and the SAED patterns corresponding to zones b~g in Fig.9a (b~g), respectively
Fig.10  Schematics of distributions of interfacial reaction products and element diffusion paths (shown by arrows) for SiCf /Ti65 composites
Fig.11  SEM images of the interfacial reaction layer for SiCf/Ti65 composites under different thermal exposure conditions
Temperature / ℃5 h15 h30 h50 h100 h150 h200 h
650---0.800.810.810.81
750---0.910.981.031.08
800---1.211.381.511.58
9000.971.121.311.512.503.373.99
Table 1  Thicknesses of interfacial reaction layer for SiCf /Ti65 composites under different thermal exposure conditions
Fig.12  Interfacial reaction kinetic curves of SiCf /Ti65 composites (t—thermal exposure time)
Fig.13  Arrhenius plot of the interfacial reaction layer growth in SiCf /Ti65 composites (k—rate constant, T—thermal exposure temperature)
Materialk0 / (m·s-1/2)Q / (kJ·mol-1)
SiCf /TC17[28]4.64×10-3138
SiCf /Ti60[31]2.27×10-4118
SiCf /Ti652.37×10-593
Table 2  Frequency factors (k0) and growth activation energies (Q)for different materials
[1] Fan Z, Guo Z X, Cantor B. The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs [J]. Composites, 1997, 28A: 131
[2] Zhao G M, Yang Y Q, Zhang W, et al. Microstructure and grain growth of the matrix of SiCf/Ti-6Al-4V composites prepared by the consolidation of matrix-coated fibers in the β phase field [J]. Composites, 2013, 52B: 155
[3] Wang Y M, Zhang G X, Zhang X, et al. Advances in SiC fiber reinforced titanium matrix composites [J]. Acta Metall. Sin., 2016, 52: 1153
(王玉敏, 张国兴, 张 旭等. 连续SiC纤维增强钛基复合材料研究进展 [J]. 金属学报, 2016, 52: 1153)
[4] Baik K H, Grant P S. Chemical interaction between sigma 1140+ SiC fibre and Ti-6Al-4V [J]. Scr. Mater., 2001, 44: 607
[5] Yang Y Q, Ma Z J, Lü X H, et al. Studies on interface of SiCf /Ti-6Al-4V composites [J]. Rare Met. Mater. Eng., 2006, 35: 1516
[6] Boehlert C J, Majumdar B S, Krishnamurthy S, et al. Role of matrix microstructure on room-temperature tensile properties and fiber-strength utilization of an orthorhombic Ti-alloy-based composite [J]. Metall. Mater. Trans., 1997, 28A: 309
[7] Gundel D B, Miracle D B. The influence of interface structure and composition on the response of single-fiber SiC/Ti-6Al-4V composites to transverse tension [J]. Appl. Compos. Mater., 1998, 5: 95
[8] Xiao P. Study on interfacial property and residual stress of SiC fiber reinforced Ti-22Al-26Nb composites [D]. Graduate School of Chinese Academy of Science, 2010
(肖 鹏. SiC纤维增强Ti-22Al-26Nb基复合材料的界面性能及残余应力研究 [D]. 中国科学院研究生院, 2010)
[9] Zhang G X, Kang Q, Shi N L, et al. Kinetics and mechanism of interfacial reaction in a SiCf/Ti composite [J]. J. Mater. Sci. Technol., 2003, 19: 407
[10] Lü X H, Yang Y Q, Huang B, et al. Reaction diffusion in continuous SiC fiber reinforced Ti matrix composite [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 27
[11] Sandhu S, Tsakiropoulos P, Wood M J, et al. Interfacial studies in titanium aluminide/SiCf composites [J]. Key Eng. Mater., 1997, 127-131: 671
[12] Zhang S M, Wang M J, Wen M, et al. Interfacial reactions and matrix microstructure evolution in SiCf/Ti composites dominated by primary structure of Ti matrix [J]. Ceram. Int., 2019, 45: 17767
[13] Yang Y Q, Lu X H, Luo X, et al. Kinetics of interfacial reaction in SiCf/Ti6Al4V composites [J]. Mater. Sci. Forum, 2007, 546-549: 1627
[14] Naka M, Feng J C, Schuster J C. Phase reaction and diffusion path of the SiC/Ti system [J]. Metall. Mater. Trans., 1997, 28A: 1385
[15] Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36: 91
[16] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aerona. Mater., 2014, 34(4): 1
(王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1)
[17] Subramanian P R, Krishnamurthy S, Keller S T, et al. Processing of continuously reinforced Ti-alloy metal matrix composites (MMC) by magnetron sputtering [J]. Mater. Sci. Eng., 1998, A244: 1
[18] Martineau P, Lahaye M, Pailler R, et al. SiC filament/titanium matrix composites regarded as model composites: Part 1 Filament microanalysis and strength characterization [J]. J. Mater. Sci., 1984, 19: 2731
[19] Wu M, Zhang K, Huang H, et al. Interfacial reactions in SiCf/C/Ti17 composites dominated by texture of carbon coatings [J]. Carbon, 2017, 124: 238
[20] Ning X J, Pirouz P, Lagerlof K P D, et al. The structure of carbon in chemically vapor deposited SiC monofilaments [J]. J. Mater. Res., 1990, 5: 2865
[21] Das G. A study of the reaction zone in an SiC fiber-reinforced titanium alloy composite [J]. Metall. Mater. Trans., 1990, 21A: 1571
[22] Martineau P, Pailler R, Lahaye M, et al. SiC filament/titanium matrix composites regarded as model composites: Part 2 Fibre/matrix chemical interactions at high temperatures [J]. J. Mater. Sci., 1984, 19: 2749
doi: 10.1007/BF00550832
[23] Lü X H, Yang Y Q, Ma Z J, et al. Kinetics and mechanism of interfacial reaction in SCS-6 SiC continuous fiber-reinforced Ti-Al intermetallic matrix composites [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 77
[24] Lü X H, Yang Y Q, Ma Z J, et al. The formation sequence of interfacial reaction products and diffusion path in SiC/Ti6Al4V composite [J]. Rare Met. Mater. Eng., 2007, 36: 1162
[25] Rudy E. Part V, materials laboratory [R]. Tech. Rep. AFML-TR-65-2, Wright-Patterson Air Force Base, OH, 1969
[26] Morozumi S, Endo M, Kikuchi M, et al. Bonding mechanism between silicon carbide and thin foils of reactive metals [J]. J. Mater. Sci., 1985, 20: 3976
[27] Hall I W, Ni C Y. Thermal stability of an SCS-6/Ti-22Al-23Nb composite [J]. Mater. Sci. Eng., 1995, A192-193: 987
[28] Zhang X, Wang Y M, Lei J F, et al. The interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composite [J]. Acta Metall. Sin., 2012, 48: 1306
(张 旭, 王玉敏, 雷家峰等. SiCf/TC17复合材料界面热稳定性及元素扩散机理 [J]. 金属学报, 2012, 48: 1306)
[29] Yang J M, Jeng S M. Interfacial reactions in titanium-matrix composites [J]. JOM, 1989, 41(11): 56
[30] Lü X H. Study on the interfacial diffusion behaviors of SiC continuous fiber reinforced Ti-matrix composites [D]. Xi'an: Northwestern Polytechnical University, 2006
(吕祥鸿. SiC连续纤维增强Ti基复合材料的界面扩散行为研究 [D]. 西安: 西北工业大学, 2006)
[31] Kong X, Wang Y M, Zhang X, et al. Thermal stability of SiCf /Ti60 composites [J]. Rare Met. Mater. Eng., 2017, 46(S1): 71
(孔 旭, 王玉敏, 张 旭等. SiCf/Ti60复合材料的热稳定性 [J]. 稀有金属材料与工程, 2017, 46(S1): 71)
[1] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[2] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[3] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[4] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[5] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[6] Peng JIN,Ran SUI,Fuxiang LI,Weiyuan YU,Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys[J]. 金属学报, 2017, 53(4): 479-486.
[7] Yumin WANG, Guoxing ZHANG, Xu ZHANG, Qing YANG, Lina YANG, Rui YANG. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES[J]. 金属学报, 2016, 52(10): 1153-1170.
[8] Mingfang WU,Fei LIU,Fengjiang WANG,Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT[J]. 金属学报, 2015, 51(9): 1129-1135.
[9] Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. 金属学报, 2015, 51(9): 1025-1037.
[10] Xiaoyan CHEN,Zhe JIN,Xuefeng BAI,Yizhou ZHOU,Tao JIN,Xiaofeng SUN. EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD[J]. 金属学报, 2015, 51(7): 853-858.
[11] HUANG Mingliang, ZHANG Zhijie, FENG Xiaofei, ZHAO Ning. REVERSE POLARITY EFFECT IN Ni/Sn-9Zn/Ni INTERCONNECT UNDERGOING LIQUID- SOLID ELECTROMIGRATION[J]. 金属学报, 2015, 51(1): 93-99.
[12] CHEN Xiaoyan, ZHOU Yizhou, ZHANG Chaowei, JIN Tao, SUN Xiaofeng. EFFECT OF Hf ON THE INTERFACIAL REACTION BETWEEN A NICKEL BASE SUPERALLOY AND A CERAMIC MATERIAL[J]. 金属学报, 2014, 50(8): 1019-1024.
[13] WU Mingfang, KUANG Hongjin, WANG Fengjiang, LIN Hongxiang, XU Guoxiang. PARTIALLY TRANSIENT LIQUID PHASE-DIFFUSION BONDING ON Ti(C, N)-Al2O3 CERAMIC MATRIX COMPOSITES USING Zr/Cu/Zr AS INTERLAYER[J]. 金属学报, 2014, 50(5): 619-625.
[14] KE Changbo,),ZHOU Minbo ),ZHANG Xinping ). PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2014, 50(3): 294-304.
[15] ZHOU Minbo, MA Xiao, ZHANG Xinping. THE INTERFACIAL REACTION AND INTERMETALLIC COMPOUND GROWTH BEHAVIOR OF BGA STRUC-TURE Sn-3.0Ag-0.5Cu/Cu SOLDER JOINT AT LOW REFLOW TEMPERATURES[J]. 金属学报, 2013, 49(3): 341-350.
No Suggested Reading articles found!