Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (8): 1006-1012     DOI:
Research Articles Current Issue | Archive | Adv Search |
RESEARCH ON LASER SOLID FORMING OF A FUNCTIONALLY GRADED TI-TI2ALNB ALLOY
;LIN Xin;LV Xiaowei LV;Jing Chen;Weidong Huang
西北工业大学凝固技术国家重点实验室
Cite this article: 

LIN Xin; LV Xiaowei LV; Jing Chen; Weidong Huang. RESEARCH ON LASER SOLID FORMING OF A FUNCTIONALLY GRADED TI-TI2ALNB ALLOY. Acta Metall Sin, 2008, 44(8): 1006-1012 .

Download:  PDF(3496KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A functionally graded Ti-Ti2AlNb alloy, which had continuous compositional gradient and regular outline with a length of ~17 mm, was fabricated by laser solid forming. Phase morphological evolution and microstructure evolution, and microhardness along the compositional gradient direction were analyzed. With the increase of aluminum and niobium contents, a series of phase evolutions along the compositional gradient occurred: α'→α+β→α+α'→α'→α+β→ α+β/B2+α2→ β/B2+α2→ β/B2→ B2+α2+O→ B2, and the compositionally graded material accomplished a transition of α titanium alloy, α+β titanium alloy, β titanium alloy, finally ended with Ti2AlNb-based alloy. In the transition layers, The microhardness increased from 170HV with CP titanium at the bottom to 470HV with Ti2AlNb at the top. Based on the non-equilibrium phase diagram of the Ti-rich corner, the phase morphological evolution during laser solid forming of the graded materials were explained on combining with the analysis of the influence of the Al, Nb on the stability of α,β and α2 phases in titanium alloys.
Key words:  Laser solid forming      Titanium      Ti2AlNb      Functionally graded materials      Phase transformations      Microstruct     
Received:  25 December 2007     
ZTFLH:  TG24  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I8/1006

[1]Banerjee D,GogiA A K,Nandy T K.Acta Metall,1988; 36:871
[2]Banerjee D.Prog Mater Sci,1997;42:135
[3]Boehlert C J.Mater Sci Eng,2000;A279:118
[4]Boehlert C J,Majumdar B S,Seetharaman V,Miracle D B.Metall Mater Trans,1999;30A:2305
[5]Boehlert C J.Metall Mater Trans,2001;32A:1977
[6]Huang W D,Lin X,Chen J,Liu Z X,Li Y M.Laser Solid Forming.Xi'an:Northwestern Polytechnical University Press,2007:305 (黄卫东,林鑫,陈静,刘振侠,李延民.激光立体成形.西安:西北工业大学出版社,2007:305)
[7]Lin X,Yue T M,Yang H O,Huang W D.Acta Mater, 2006;54:1901
[8]Yang H O,Lin X,Chen J,Yang J,Huang W D.Chin J Lasers,2005;32:567 (杨海欧,林鑫,陈静,杨健,黄卫东.中国激光,2005;32:567)
[9]Banerjee R,Collins P C,Bhattacharyya D,Banerjes S, Fraser H L.Acta Mater,2003;51:3277
[10]Collins P C,Banerjee R,Banerjee S,Fraser H L.Mater Sci Eng,2003;A352:118
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!