Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (8): 1013-1018     DOI:
Research Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF Ti-20wt%Ni ALLOY IN LASER SOLID FORMING
;Xin Lin;;Jing Chen;Weidong Huang
西北工业大学凝固技术国家重点实验室
Cite this article: 

Xin Lin; Jing Chen; Weidong Huang. MICROSTRUCTURE EVOLUTION OF Ti-20wt%Ni ALLOY IN LASER SOLID FORMING. Acta Metall Sin, 2008, 44(8): 1013-1018 .

Download:  PDF(2007KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of the processing parameters on the microstructure during laser solid forming (LSF) of Ti -20wt%Ni alloy was investigated. The microstructure consists of β-Ti dendrite and(β-Ti +Ti2Ni)rod and lamellar eutectic in the inter-dendrite. The characteristic dendritic size F decreased with the decreasing of laser energy density De, resulting from the decreasing of laser power and increasing of scanning velocity, in fact, the characteristic dendritic spacing was decided by. On the other hand, the eutectic spacing also decreased with the increase of scanning velocity. The variation of the characteristic dendritic size and eutectic spacing is roughly in accord with the KGT model and TMK model respectively.
Key words:  Laser Solid Forming      Parameters      Microstructure      Ti-20wt%Ni      
Received:  21 December 2007     
ZTFLH:  TG132.32  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I8/1013

[1]Suryanarayana C,Fores F H,Rowe R G.Int Mater Rev, 1991;36:85
[2]Lin X,Yue T M,Yang H O,Huang W D.Acta Mater, 2006;54:1901
[3]Lin X,Yue T M,Yang H O,Huang W D.Metall Mater Trans,2007;38A:127
[4]Xue S B,LüX C,Dong J,Guo K J.Weld Join,2003;11: 5 (薛松柏,吕晓春,董健,郭克珺.焊接,2003;11:5)
[5]Franti G W,Williams J C,Aaronson H I.Metall Trans, 1978;9A:1641
[6]Krishnamurthy S,Froes F H.Int Mater Rev,1989;34: 297
[7]Radojevic B B.Mater Sci Eng,2001;A304-306:385
[8]Otsuka K,Ren X.Prog Mater Sci,2005;50:516
[9]Fukuda T,Kakeshita T,Houjoh H,Shiraishi S,Saburi T. Mater Sci Eng,1999;A273-275:166
[10]Li Y M,Yang H O,Lin X,Huang W D,Li J G,Zhou Y H.Mater Sci Eng,2003;A360:18
[11]Huang W D,Li Y M,Feng L P,Chen J,Yang H O,Lin X.J Mater Eng,2002;(3):40 (黄卫东,李延民,冯莉萍,陈静,杨海欧,林鑫.材料工程,2002;(3):40)
[12]Wu X,Mei J.J Mater Proc Technol,2003;135:266
[13]Kurz W,Giovanola B,Trivedi R.Acta Metall,1986;34: 823
[14]Jackson K A,Hunt J D.Trans Metall Soc AIME,1966; 236:1129
[15]Trivedi R,Magnin P,Kurz W.Acta Metall,1987;35:971
[16]Lin X,Yue T M,Yang H O,Huang W D.Mater Sci Eng, 2005;A391:325
[17]Li Y M.PhD Thesis,Northwestern Polytechnical Univer- sity,Xi'an,2001 (李延民,西北工业大学博士学位论文,西安,2001)
[18]Kurz W,Fisher D J.Fundamentals of Solidification.3rd ed,Aedermansdorf,Switzerland:Trans Tech Publications Ltd.,1992:83
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!