Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 821-825     DOI:
Research Articles Current Issue | Archive | Adv Search |
Oxidation behavior of fine copper powder between 250-400℃
Guo Yan-Hui;Nan Zhang;Jizhong Chen
浙江大学
Cite this article: 

Guo Yan-Hui; Nan Zhang; Jizhong Chen. Oxidation behavior of fine copper powder between 250-400℃. Acta Metall Sin, 2008, 44(7): 821-825 .

Download:  PDF(1786KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, the morphology and structure change of fine copper powder during its oxidization process was observed by SEM and TEM. And their weight gain processes were measured by Thermal gravity Analyser(TGA). Based on the experiments and some classical theories, the course of the oxidation of fine copper powder was proposed. Then a new kinetics equation was deduced to simulate the course. The analog results agree well with the data gained from the oxidation of copper between 250-400℃.
Key words:  fine copper powder      oxidation      relational expression      simulation      
Received:  15 October 2007     
ZTFLH:  TG031.7  
  TQ050.9  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/821

[1]Tu H L,Zhao G Q,Guo Q W.Nonferrous Metals- Metallurgy,Material,Reproduct and Environmental Pro- teetion.Beijing:Chemical Industry Press,2003:14 (屠海令,赵国权,郭青蔚.有色金属——冶金、材料、再生与环保.北京:化学工业出版社,2003:14)
[2]Patil S,Salnkar S It,Patti P P.Appl Surf Sci,2004;225: 204
[3]Han Z,Lu L,Zhang H W,Yang Z Q,Wang F H,Lu K. Oxid Met,2005;63:261
[4]Bridges D W,Baur J P,Baur G S,Fassell W M.J Elec- trochem Soc,1956;103:475
[5]Wallwork G R.,Smeltzer W W.Corros Sci,1969;9:561
[6]Mrowec S.Oxid Met,1973;6:178
[7]Garnaud G.Oxid Met,1977;11:127
[8]Hoar T P,Price L E.Trans Faraday Soc,1938;34:867
[9]Zhu R Z,He Y D,Qi H B.High-temperature Corro- sion and Resisting High-temperature Corrosion Materi- als.Shanghai:Shanghai Science and Technology Press, 1995:99 (朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料.上海:上海科学技术出版社,1995:99)
[10]Li T F.High Temperature Oxidation and Hot Corrosion of Metals.Beijing:Chemical Industry Press,2003:52 (李铁藩.金属高温氯化和热腐蚀.北京:化学工业出版社,2003:52)
[11]Evans U R.The Corrosion and Oxidation of Metals.Lon- don:Edward Arnold Ltd,1968;696:701
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[6] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[7] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[8] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[9] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[10] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[14] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[15] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
No Suggested Reading articles found!