Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (12): 1665-1674    DOI: 10.11900/0412.1961.2021.00568
Current Issue | Archive | Adv Search |
Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment
CHEN Kaixuan1, LI Zongxuan1, WANG Zidong1,2(), Demange Gilles3, CHEN Xiaohua2, ZHANG Jiawei1, WU Xuehua1, Zapolsky Helena3
1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3Group of Materials Science, University of Rouen Normandy, 76801 Saint-Etienne du Rouvray, France
Cite this article: 

CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment. Acta Metall Sin, 2023, 59(12): 1665-1674.

Download:  HTML  PDF(3455KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The morphology of precipitates changes during coarsening regimes, thereby resulting in the modification of mechanical properties of metallic materials. Hence, understanding the morphological evolution in precipitates is critical to tailor the macroscopic properties of industrial alloys. In particular, the morphology of Fe-rich precipitates in Cu alloys is complex, and it evolves from sphere to cube to petal and finally splits, which has been observed during casting and furnace cooling. However, morphological changes in Fe-rich precipitates during isothermal treatment remain unclear; thus, revealing the mechanism of morphological evolution is necessary. In this study, the relationship among the morphological evolution behavior of Fe-rich precipitates in Cu-2.0Fe (mass fraction, %) alloy, temperature, and time under different isothermal-treated processes was analyzed using SEM and TEM coupled with phase-field modeling. Results show morphology changes from a sphere in nanoscale to a cube in submicron scale to a four-branched petal in the submicron scale, and to a multi-branched petal in micron scale during coarsening of Fe-rich precipitates in Cu-2.0Fe alloy isothermally treated at 924, 964, and 984oC (i.e., the temperature range of the fcc Fe phase). The size of multi-branched petal-like Fe-rich precipitates and the number of branches increase with the increase of isothermal temperature and holding time. During coarsening of multi-branched petal-like precipitates, the surrounding small Fe-rich precipitates are engulfed, and thence the number density of the smaller ones in nano and submicron scales decreases when the temperature increases. The modeling result elucidates the multiple morphological evolution of Fe-rich precipitates, which is identical to the experiments, under the effects of interfacial energy, elastic energy, and chemical driving force. In particular, the combined effect of the latter two energies induces the initiation and growth of secondary branches out of primary branches in the four-branched petals, thereby producing multi-branched petal-like precipitates.

Key words:  copper alloy      precipitate      morphological evolution      material characterization      phase-field simulation     
Received:  16 December 2021     
ZTFLH:  TG166.2  
Fund: National Natural Science Foundation of China(52101119);Beijing Municipal Natural Science Fo-undation(2214072);Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities)(FRF-IDRY-20-034);Fundamental Research Funds for the Central Universities(00007490)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00568     OR     https://www.ams.org.cn/EN/Y2023/V59/I12/1665

Fig.1  Characterization of Fe-rich precipitates in the air-cooled Cu-2.0Fe alloy (a, b) SEM (a) and TEM (b) images showing the cuboidal and petal-like precipitates (c) HRTEM image showing a petal-like precipitate (Inset shows the SAED pattern of the precipitate) (d) TEM-EDS result of the petal-like precipitate in Fig.1c
Fig.2  Characterization of Fe-rich precipitates in the water-cooled Cu-2.0Fe alloy
(a) SEM image showing no precipitate
(b) HAADF-STEM image showing the nano-sized spherical precipitates
(c) HRTEM image of two nano-sized spherical precipitates (Inset shows the FFT pattern of the square zone)
(d) TEM-EDS result of the spherical precipitate marked by the arrow in Fig.2b
Fig.3  SEM images (a, d, g) and corresponding EDS mappings of Cu (b, e, h) and Fe (c, f, i) elements showing Fe-rich precipitates in the isothermal-treated Cu-2.0Fe alloy (a-c) 924oC, 6 h (d-f) 964oC, 6 h (g-i) 984oC, 6 h
Fig.4  Magnified SEM images of the square zones in Fig.3 of the isothermal-treated Cu-2.0Fe alloys
(a) 924oC, 6 h (b) 964oC, 6 h (c) 984oC, 6 h
Fig.5  Size distributions of the precipitates after 924oC, 6 h (a), 964oC, 6 h (b), and 984oC, 6 h (c) isothermal treatments, and number density of the small precipitates after isothermal treatments for 6 h (d) (dmean—mean diameter)
Fig.6  SEM (a, d, g) images and corresponding EDS mappings of Cu (b, e, h) and Fe (c, f, i) elements showing Fe-rich precipitates in the isothermal-treated Cu-2.0Fe alloys at 964oC for 1 h (a-c), 6 h (d-f), and 12 h (g-i)
Fig.7  Morphological evolutions of the Fe-rich single precipitate in Cu-Fe system with an average Fe concentration c¯ of 0.02 at 984oC obtained in phase field modeling (The figures show the concentration fields of Fe-rich precipitate at different time steps t*. Initial configuration contains an iron pure spherical nucleus of radius R = 4Δx, in which Δx is the grid spacing. The size of the simulation box is 10242)
(a) t* = 1000 (b) t* = 20000 (c) t* = 70000 (d) t* = 100000 (e) t* = 150000 (f) t* = 200000
1 Chen K X, Chen X H, Ding D, et al. Formation mechanism of in-situ nanostructured grain in cast Cu-10Sn-2Zn-1.5Fe-0.5Co (wt.%) alloy[J]. Mater. Des., 2016, 94: 338
doi: 10.1016/j.matdes.2016.01.064
2 Chen K X, Chen X H, Wang Z D, et al. Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure[J]. J. Alloys Compd., 2018, 763: 592
doi: 10.1016/j.jallcom.2018.05.297
3 Li Z, Wu R. Research development of theoretical basis and application of strengthening precipitates in steel[J]. Mater. Rep., 2020, 34(Z2): 412
李 钊, 吴 润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412
4 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
5 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity[J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086 pmid: 30819960
6 Sidorov V, Polovov I, Rusanov B, et al. Density, electroresistivity and magnetic susceptibility of Al-Sc alloy in crystalline and liquid states[J]. J. Alloys Compd., 2019, 787: 1345
doi: 10.1016/j.jallcom.2019.01.354
7 Liu C W, Li Y S, Zhu L H, et al. Precipitation kinetics of γ phase in an inverse Ni-Al alloy[J]. Comput. Condens. Matter, 2017, 11: 40
8 Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review[J]. Prog. Mater. Sci., 2020, 110: 100633
doi: 10.1016/j.pmatsci.2019.100633
9 Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Mater., 2001, 49: 1909
doi: 10.1016/S1359-6454(01)00116-1
10 Van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys[J]. Acta Mater., 2005, 53: 4225
doi: 10.1016/j.actamat.2005.05.022
11 Miyazaki T, Imamura H, Kozakai T. The formation of “γ' precipitate doublets” in Ni-Al alloys and their energetic stability[J]. Mater. Sci. Eng., 1982, 54: 9
doi: 10.1016/0025-5416(82)90024-6
12 Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys[J]. Acta Metall. Sin., 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ'相形态不稳定性研究[J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
13 Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys[J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
14 Chen Y Q, Prasath Babu R, Slater T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy[J]. Acta Mater., 2016, 110: 295
doi: 10.1016/j.actamat.2016.02.067
15 Wang L, Zenk C, Stark A, et al. Morphology evolution of Ti3AlC carbide precipitates in high Nb containing TiAl alloys[J]. Acta Mater., 2017, 137: 36
doi: 10.1016/j.actamat.2017.07.018
16 Tian G F, Chen Y, Zou J W, et al. Research on morphology instability of γ' precipitates in FGH4096 superalloy[J]. Powder Metall. Ind., 2018, 28(6): 23
田高峰, 陈 阳, 邹金文 等. FGH4096合金γ'析出相的形态失稳研究[J]. 粉末冶金工业, 2018, 28(6): 23
17 Vogel F, Wanderka N, Balogh Z, et al. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy[J]. Nat. Commun., 2013, 4: 2955
doi: 10.1038/ncomms3955 pmid: 24356413
18 Jokisaari A M, Naghavi S S, Wolverton C, et al. Predicting the morphologies of γ' precipitates in cobalt-based superalloys[J]. Acta Mater., 2017, 141: 273
doi: 10.1016/j.actamat.2017.09.003
19 Wang Z D, Wang X W, Wang Q S, et al. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy[J]. Nanotechnology, 2009, 20: 075605
20 Ye Y X, Yang X Y, Liu C Z, et al. Enhancement of strength and ductility of Cu-Sn-Zn alloy by iron addition[J]. Mater. Sci. Eng., 2014, A612: 246
21 Cao M M, Zhou Z M, Tang L W, et al. Development of Cu-Fe alloys with high strength and high conductivity[J]. Mater. Rep., 2011, 25: 487
曹敏敏, 周志明, 唐丽文 等. 高强高导Cu-Fe合金的研究进展[J]. 材料导报, 2011, 25: 487
22 Chen K X, Korzhavyi P A, Demange G, et al. Morphological instability of iron-rich precipitates in Cu-Fe-Co alloys[J]. Acta Mater., 2019, 163: 55
doi: 10.1016/j.actamat.2018.10.013
23 Han S Z, Kim K H, Kang J, et al. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles[J]. Sci. Rep., 2015, 5: 17364
doi: 10.1038/srep17364
24 Böhm H J, Rasool A. Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites[J]. Int. J. Solids Struct., 2016, 87: 90
doi: 10.1016/j.ijsolstr.2016.02.028
25 Qin S Y, Chen C R, Zhang G D, et al. The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites[J]. Mater. Sci. Eng., 1999, A272: 363
26 Hu H, Li L, Xu L. Research progress on the preparation technology of Cu-Fe alloy[J]. Powder Metall. Technol., 2019, 37: 468
胡 号, 李 雷, 许 磊. Cu-Fe合金制备技术研究进展[J]. 粉末冶金技术, 2019, 37: 468
27 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 152
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版. 上海: 上海交通大学出版社, 2010: 152
28 Zuo L F, Ni R, Wang Z D, et al. Nano-precipitates in low carbon high strength steel during the tempering process[J]. J. Iron Steel Res., 2013, 25(2): 39
左龙飞, 倪 睿, 王自东 等. 低碳高强钢中纳米析出相回火过程中的透射分析[J]. 钢铁研究学报, 2013, 25(3): 39
29 Demange G, Chamaillard M, Zapolsky H, et al. Generalization of the Fourier-spectral Eyre scheme for the phase-field equations: Application to self-assembly dynamics in materials[J]. Comput. Mater. Sci., 2018, 144: 11
doi: 10.1016/j.commatsci.2017.11.044
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[5] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[6] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[7] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[8] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[10] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[11] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[12] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[13] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[14] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[15] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
No Suggested Reading articles found!