|
|
Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment |
CHEN Kaixuan1, LI Zongxuan1, WANG Zidong1,2( ), Demange Gilles3, CHEN Xiaohua2, ZHANG Jiawei1, WU Xuehua1, Zapolsky Helena3 |
1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3Group of Materials Science, University of Rouen Normandy, 76801 Saint-Etienne du Rouvray, France |
|
Cite this article:
CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment. Acta Metall Sin, 2023, 59(12): 1665-1674.
|
Abstract The morphology of precipitates changes during coarsening regimes, thereby resulting in the modification of mechanical properties of metallic materials. Hence, understanding the morphological evolution in precipitates is critical to tailor the macroscopic properties of industrial alloys. In particular, the morphology of Fe-rich precipitates in Cu alloys is complex, and it evolves from sphere to cube to petal and finally splits, which has been observed during casting and furnace cooling. However, morphological changes in Fe-rich precipitates during isothermal treatment remain unclear; thus, revealing the mechanism of morphological evolution is necessary. In this study, the relationship among the morphological evolution behavior of Fe-rich precipitates in Cu-2.0Fe (mass fraction, %) alloy, temperature, and time under different isothermal-treated processes was analyzed using SEM and TEM coupled with phase-field modeling. Results show morphology changes from a sphere in nanoscale to a cube in submicron scale to a four-branched petal in the submicron scale, and to a multi-branched petal in micron scale during coarsening of Fe-rich precipitates in Cu-2.0Fe alloy isothermally treated at 924, 964, and 984oC (i.e., the temperature range of the fcc Fe phase). The size of multi-branched petal-like Fe-rich precipitates and the number of branches increase with the increase of isothermal temperature and holding time. During coarsening of multi-branched petal-like precipitates, the surrounding small Fe-rich precipitates are engulfed, and thence the number density of the smaller ones in nano and submicron scales decreases when the temperature increases. The modeling result elucidates the multiple morphological evolution of Fe-rich precipitates, which is identical to the experiments, under the effects of interfacial energy, elastic energy, and chemical driving force. In particular, the combined effect of the latter two energies induces the initiation and growth of secondary branches out of primary branches in the four-branched petals, thereby producing multi-branched petal-like precipitates.
|
Received: 16 December 2021
|
|
Fund: National Natural Science Foundation of China(52101119);Beijing Municipal Natural Science Fo-undation(2214072);Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities)(FRF-IDRY-20-034);Fundamental Research Funds for the Central Universities(00007490) |
1 |
Chen K X, Chen X H, Ding D, et al. Formation mechanism of in-situ nanostructured grain in cast Cu-10Sn-2Zn-1.5Fe-0.5Co (wt.%) alloy[J]. Mater. Des., 2016, 94: 338
doi: 10.1016/j.matdes.2016.01.064
|
2 |
Chen K X, Chen X H, Wang Z D, et al. Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure[J]. J. Alloys Compd., 2018, 763: 592
doi: 10.1016/j.jallcom.2018.05.297
|
3 |
Li Z, Wu R. Research development of theoretical basis and application of strengthening precipitates in steel[J]. Mater. Rep., 2020, 34(Z2): 412
|
|
李 钊, 吴 润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412
|
4 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
5 |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity[J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086
pmid: 30819960
|
6 |
Sidorov V, Polovov I, Rusanov B, et al. Density, electroresistivity and magnetic susceptibility of Al-Sc alloy in crystalline and liquid states[J]. J. Alloys Compd., 2019, 787: 1345
doi: 10.1016/j.jallcom.2019.01.354
|
7 |
Liu C W, Li Y S, Zhu L H, et al. Precipitation kinetics of γ phase in an inverse Ni-Al alloy[J]. Comput. Condens. Matter, 2017, 11: 40
|
8 |
Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review[J]. Prog. Mater. Sci., 2020, 110: 100633
doi: 10.1016/j.pmatsci.2019.100633
|
9 |
Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Mater., 2001, 49: 1909
doi: 10.1016/S1359-6454(01)00116-1
|
10 |
Van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys[J]. Acta Mater., 2005, 53: 4225
doi: 10.1016/j.actamat.2005.05.022
|
11 |
Miyazaki T, Imamura H, Kozakai T. The formation of “γ' precipitate doublets” in Ni-Al alloys and their energetic stability[J]. Mater. Sci. Eng., 1982, 54: 9
doi: 10.1016/0025-5416(82)90024-6
|
12 |
Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys[J]. Acta Metall. Sin., 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
|
|
胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ'相形态不稳定性研究[J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
|
13 |
Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys[J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
|
14 |
Chen Y Q, Prasath Babu R, Slater T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy[J]. Acta Mater., 2016, 110: 295
doi: 10.1016/j.actamat.2016.02.067
|
15 |
Wang L, Zenk C, Stark A, et al. Morphology evolution of Ti3AlC carbide precipitates in high Nb containing TiAl alloys[J]. Acta Mater., 2017, 137: 36
doi: 10.1016/j.actamat.2017.07.018
|
16 |
Tian G F, Chen Y, Zou J W, et al. Research on morphology instability of γ' precipitates in FGH4096 superalloy[J]. Powder Metall. Ind., 2018, 28(6): 23
|
|
田高峰, 陈 阳, 邹金文 等. FGH4096合金γ'析出相的形态失稳研究[J]. 粉末冶金工业, 2018, 28(6): 23
|
17 |
Vogel F, Wanderka N, Balogh Z, et al. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy[J]. Nat. Commun., 2013, 4: 2955
doi: 10.1038/ncomms3955
pmid: 24356413
|
18 |
Jokisaari A M, Naghavi S S, Wolverton C, et al. Predicting the morphologies of γ' precipitates in cobalt-based superalloys[J]. Acta Mater., 2017, 141: 273
doi: 10.1016/j.actamat.2017.09.003
|
19 |
Wang Z D, Wang X W, Wang Q S, et al. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy[J]. Nanotechnology, 2009, 20: 075605
|
20 |
Ye Y X, Yang X Y, Liu C Z, et al. Enhancement of strength and ductility of Cu-Sn-Zn alloy by iron addition[J]. Mater. Sci. Eng., 2014, A612: 246
|
21 |
Cao M M, Zhou Z M, Tang L W, et al. Development of Cu-Fe alloys with high strength and high conductivity[J]. Mater. Rep., 2011, 25: 487
|
|
曹敏敏, 周志明, 唐丽文 等. 高强高导Cu-Fe合金的研究进展[J]. 材料导报, 2011, 25: 487
|
22 |
Chen K X, Korzhavyi P A, Demange G, et al. Morphological instability of iron-rich precipitates in Cu-Fe-Co alloys[J]. Acta Mater., 2019, 163: 55
doi: 10.1016/j.actamat.2018.10.013
|
23 |
Han S Z, Kim K H, Kang J, et al. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles[J]. Sci. Rep., 2015, 5: 17364
doi: 10.1038/srep17364
|
24 |
Böhm H J, Rasool A. Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites[J]. Int. J. Solids Struct., 2016, 87: 90
doi: 10.1016/j.ijsolstr.2016.02.028
|
25 |
Qin S Y, Chen C R, Zhang G D, et al. The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites[J]. Mater. Sci. Eng., 1999, A272: 363
|
26 |
Hu H, Li L, Xu L. Research progress on the preparation technology of Cu-Fe alloy[J]. Powder Metall. Technol., 2019, 37: 468
|
|
胡 号, 李 雷, 许 磊. Cu-Fe合金制备技术研究进展[J]. 粉末冶金技术, 2019, 37: 468
|
27 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 152
|
|
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版. 上海: 上海交通大学出版社, 2010: 152
|
28 |
Zuo L F, Ni R, Wang Z D, et al. Nano-precipitates in low carbon high strength steel during the tempering process[J]. J. Iron Steel Res., 2013, 25(2): 39
|
|
左龙飞, 倪 睿, 王自东 等. 低碳高强钢中纳米析出相回火过程中的透射分析[J]. 钢铁研究学报, 2013, 25(3): 39
|
29 |
Demange G, Chamaillard M, Zapolsky H, et al. Generalization of the Fourier-spectral Eyre scheme for the phase-field equations: Application to self-assembly dynamics in materials[J]. Comput. Mater. Sci., 2018, 144: 11
doi: 10.1016/j.commatsci.2017.11.044
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|