Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature
LIU Laidi1,2, DING Biao1,2(), REN Weili1,2(), ZHONG Yunbo1,2, WANG Hui3, WANG Qiuliang3
1 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China 3 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:
LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature. Acta Metall Sin, 2023, 59(3): 387-398.
Nickel-based superalloys have been widely used in aero engines and gas turbines because of their excellent high-temperature strength and exceptional oxidation resistance. The oxidation resistance is obtained using the thermal barrier coatings and alloying elements. In the previous investigations, the oxidation time of the nickel-based superalloys has been focused on hundreds of hours. However, in practice, the superalloys last far longer. This study investigated the superalloy DZ445's oxidation behavior at 900oC for 300-2600 h. An oxidation film with a four-layer structure is formed after oxidation at 900oC for 500 h and above. The outermost layer is primarily composed of NiCr2O4, Cr2O3, and TiO2. The subouter layer consists of CrTaO4 and TiO2, and the subinner layer consists of Al2O3, NiCr2O4, and NiO. The innermost layer is primarily Al2O3. The appearances of the subouter layer and subinner layer greatly reduce the oxidation rate of the alloy, which is represented by the dramatic increase in the oxidation kinetics equation exponent and a sharp reduction of the oxidation rate constant. The formation of subouter layer changes the oxidation mechanism from outward diffusion of alloy elements to O-inward diffusion. When the subinner layer is formed, the oxidation behavior is controlled using the outward diffusion of Ni and Cr and the O-inward diffusion. The multilayer structure gave the alloy an excellent oxidation resistance capacity.
Fund: National Natural Science Foundation of China(51871142);Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University(SKLASS 2020-Z04);Science and Technology Commission of Shanghai Municipality(19DZ2270200)
Table 1 Chemical compositions of the DZ445 Ni-based superalloy
Fig.1 XRD spectra of the DZ445 Ni-based superalloy after the oxidation at 900oC for different time
Fig.2 SEM images of the surface of the DZ445 Ni-based superalloy oxidized at 900oC for 500 h (a), 915 h (b), 1100 h (c), 1500 h (d), 1800 h (e), 2200 h (f), and 2600 h (g) (A and B in Fig.2a indicate bright white part and dark black part of oxide film, respectively)
Area
O
Al
Cr
Ni
Ti
Ta
Co
A
61.83
2.04
17.00
11.32
5.94
0.08
1.79
B
60.28
25.25
4.40
7.96
1.08
0.03
1.00
Table 2 Elemental compositions of the oxidation scales of DZ445 Ni-based superalloy oxidized at 900oC for 500 h by EDS
Fig.3 SEM images of the cross-section of the DZ445 Ni-based superalloy oxidized at 900oC for 300 h (a), 500 h (b), 915 h (c), 1100 h (d), 1500 h (e), 1800 h (f), 2200 h (g), and 2600 h (h) (P1, P2, P3, and P4 indicate the outermost layer, subouter layer, subinner layer, and innermost layer, respectively. The bright edge on the top of the outermost layer is nickel plated)
Oxide layer
Time / h
Al
Cr
Ta
Ti
Ni
O
Co
P1
300
1.11
32.03
0.00
2.05
1.77
62.64
0.40
500
3.32
19.35
0.18
3.59
10.65
58.36
4.56
915
0.69
28.19
0.06
1.60
5.38
62.54
1.54
1100
3.30
21.54
0.17
2.31
10.64
57.94
4.09
1500
1.76
16.81
0.12
7.12
14.59
55.35
4.24
1800
5.43
16.38
0.18
4.59
8.49
61.37
3.57
2200
2.69
20.75
0.07
1.52
11.36
58.75
4.87
2600
2.20
21.02
0.22
1.80
10.29
62.13
2.34
P2
300
4.58
11.30
6.14
8.11
1.13
68.61
0.15
500
2.63
10.42
6.49
7.64
5.98
65.13
1.72
915
1.09
6.72
9.37
8.36
4.51
69.75
0.23
1100
4.22
6.69
7.29
6.79
3.45
71.07
0.50
1500
1.36
10.97
6.95
8.65
7.00
63.13
1.96
1800
2.12
9.64
7.54
8.21
3.28
68.16
1.05
2200
1.53
8.89
7.14
8.03
4.85
68.33
1.23
2600
0.73
6.53
9.26
8.58
3.75
70.90
0.25
P3
300
-
-
-
-
-
-
-
500
24.43
3.55
0.82
1.21
11.94
56.75
1.32
915
14.27
3.04
1.14
1.03
15.43
64.82
0.28
1100
27.66
1.46
0.38
0.44
9.71
59.57
0.77
1500
23.14
3.90
0.21
0.28
17.83
53.29
1.34
1800
22.94
4.47
0.83
1.27
10.50
58.72
1.27
2200
21.70
4.67
0.20
0.62
15.97
55.44
1.40
2600
20.97
3.02
0.49
0.42
12.67
61.35
1.07
P4
300
36.55
0.77
0.18
0.24
2.62
59.12
0.51
500
33.37
2.30
0.32
0.41
3.14
59.47
0.99
915
34.07
1.97
0.19
0.30
4.56
58.05
0.88
1100
35.85
1.18
0.15
1.54
0.79
60.35
0.13
1500
35.53
1.52
0.06
0.29
3.90
57.92
0.78
1800
35.24
1.90
0.07
0.90
1.53
60.12
0.24
2200
33.48
1.30
0.11
0.57
4.41
59.45
0.69
2600
33.84
1.97
0.17
0.74
1.74
61.34
0.20
Table 3 Elemental compositions of different layers in the oxidation scales of DZ445 Ni-based superalloy oxidized at 900oC for different time by EDS
Fig.4 Thicknesses of the oxidizing layer of the DZ445 Ni-based superalloy after oxidizing at 900oC for different time in air
Fig.5 Isothermal oxidation kinetics curves of DZ445 Ni-based superalloy oxidized at 850oC for 950 h, 900oC for 2600 h, and 925oC for 910 h
Fig.6 Double logarithmic graphs of the mass gain (ΔW) and oxidation time (t) at different temperatures
Fig.7 Logarithm of lnK plotted against the temperature reciprocal (1 / T) before and after the formation of the continuous subouter layer and subinner layer
Time
n
K
E / (kJ·mol-1)
Before the formation of CrTaO4 layer
2.17
1.0 × 10-2 mg2·cm-4·h-1
325
Between the formation of subouter and subinner layer
4.17
1.93 × 10-3 mg3·cm-6·h-1
424
After the formation of subinner layer
25.00
3.5 × 10-5 mg25·cm-50·h-1
485
Table 4 Oxidation kenetics equation exponent (n), oxidation rate constant (K), and activation energy (E) before and after the formation of continuous CrTaO4 layer and subinner layer at 900oC
Oxide
ΔG
Oxide
ΔG
NiO
-279.2
NiCr2O4
-826.2
Cr2O3
-547.1
CrTaO4
-580.3
TiO2
-733.4
CoO
-274.9
Al2O3
-869.2
WO2
-379.7
Ta2O5
-613.5
MoO2
-382.9
Table 5 Gibbs free energies (ΔG) of various oxides formation of DZ445 Ni-based superalloy at 900oC[17,21,23]
Fig.8 Crystal structures of oxides CrTaO4 (a), NiCr2O4 (b), Cr2O3 (c), and Al2O3 (d)
Fig.9 Concentration gradient distribution curves of alloy elements Al, Ni, and Cr from the innermost layer (or subinner layer) to the matrix after oxidation for 300 h (a) and 500 h (b)
Fig.10 Schematics of oxidation process (a) before the formation of CrTaO4 layer (b) between the formation of CrTaO4 layer and subinner layer (c) after the formation of subinner layer
1
Ren S F, Zhang J Y, Zhang X F, et al. Evolution of interfacial microstructure of Ni-Co based superalloy during plastic deformation bonding and its bonding mechanism [J]. Acta Metall. Sin., 2022, 58: 129
Zhu Y P, Sheng N C, Xie J, et al. Precipitation behavior of W-rich phases in a high W-containing Ni-based superalloys K416B [J]. Acta Metall. Sin., 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
doi: 10.11900/0412.1961.2019.00032
Zhao M Y, Zhen H J, Dong Z H, et al. Preparation and performance of a novel wear-resistant and high temperature oxidation-resistant NiCrAlSiC composite coating [J]. Acta Metall. Sin., 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
Giggins C S, Pettit F S. Oxidation of Ni-Cr-Al alloys between 1000 and 1200℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
doi: 10.1149/1.2407837
8
Barrett C A, Lowell C E. Resistance of Ni-Cr-Al alloys to cyclic oxidation at 1100 and 1200oC [J]. Oxid. Met., 1977, 11: 199
doi: 10.1007/BF00606544
9
Chen M, Patu S, Shen J N, et al. Effects of Cr+ ion implantation on the oxidation of Ni3Al [J]. J. Mater. Res., 1993, 8: 734
doi: 10.1557/JMR.1993.0734
10
Yang S W. Effect of Ti and Ta on the oxidation of a complex superalloy [J]. Oxid. Met., 1981, 15: 375
doi: 10.1007/BF00603531
11
Kim H S, Park S J, Seo S M, et al. High temperature oxidation resistance of Ni-(5~13)Co-(10~16)Cr-(5~9)W-5Al-(1~1.5)Ti-(3~6)Ta alloys [J]. Met. Mater. Int., 2016, 22: 789
doi: 10.1007/s12540-016-6305-1
12
Park S J, Lee K H, Seo S M, et al. Statistics of oxidation resistance of Ni-(0-15)Co-(8-15)Cr-(0-5)Mo-(0-10)W-(3-8)Al-(0-5)Ti-(0-10)Ta-0.1C-0.01B superalloys at 1000oC by compositional variations [J]. Rare Met., 2020, 39: 918
doi: 10.1007/s12598-018-1063-5
13
Han F F, Chang J X, Li H, et al. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy [J]. J. Alloys Compd., 2015, 619: 102
doi: 10.1016/j.jallcom.2014.08.259
14
Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
15
Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204: 3641
doi: 10.1016/j.surfcoat.2010.04.041
16
Guo H B, Wang D, Peng H, et al. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200oC [J]. Corros. Sci., 2014, 78: 369
doi: 10.1016/j.corsci.2013.10.021
17
Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850-900oC [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
18
Xu C Z, Jiang S M, Ma J, et al. High temperature oxidation behaviors of two Ni-Co-Cr-Al-Si-Y coatings deposited by arc ion palting [J]. Acta Metall. Sin., 2009, 45: 964
Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
20
Pei H Q, Wen Z X, Yue Z F. Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050oC and 1100oC in air [J]. J. Alloys Compd., 2017, 704: 218
doi: 10.1016/j.jallcom.2017.02.031
21
Zheng L, Zhang M C, Dong J X. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000oC [J]. Appl. Surf. Sci., 2010, 256: 7510
doi: 10.1016/j.apsusc.2010.05.098
22
Wang C S, Guo L L, Tang L Y, et al. Oxidation behavior of GH984G alloy in steam at 700oC [J]. Acta Metall. Sin., 2019, 55: 893
Liu F J, Zhang M C, Dong J X. High-temperature oxidation of FGH96 P/M superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2007, 20: 102
doi: 10.1016/S1006-7191(07)60014-3
24
Li Y Q, Li J L, Qin C, et al. Isothermal oxidation behavior of DZ125 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 349
Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
26
Wu Y, Narita T. The cyclic oxidation behavior of the single crystal TMS-82+ superalloy in humidified air [J]. Mater. Corros., 2009, 60: 781
27
Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ'-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
28
Godlewski K, Godlewska E. Effect of chromium on the protective properties of aluminide coatings [J]. Oxid. Met., 1986, 26: 125
doi: 10.1007/BF00664277
29
Qin L, Pei Y L, Li S S, et al. Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys [J]. Corros. Sci., 2017, 129: 192
doi: 10.1016/j.corsci.2017.08.025
30
Park S J, Seo S M, Yoo Y S, et al. Statistical study of the effects of the composition on the oxidation resistance of Ni-Based superalloys [J]. J. Nanomater., 2015, 2015: 929546
31
Lu X D, Chen T. Isothermal oxidation behaviour of a Ni-base superalloy at 900 and 1000oC [J]. J. Funct. Mater., 2015, 46: 4025
Lu X D, Yang J B, Yan M, et al. Isothermal oxidation behavior of Ni-Al-Co-Cr-Mo-Ti alloy at 850oC and 950oC [J]. Procedia Eng., 2012, 27: 932
doi: 10.1016/j.proeng.2011.12.540
Brenneman J, Wei J, Sun Z, et al. Oxidation behavior of GTD111 Ni-based superalloy at 900oC in air [J]. Corros. Sci., 2015, 100: 267
doi: 10.1016/j.corsci.2015.07.031
34
Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
doi: 10.1016/j.scriptamat.2004.05.049
35
Cserháti C, Paul A, Kodentsov A A, et al. Intrinsic diffusion in Ni3Al system [J]. Intermetallics, 2003, 11: 291
doi: 10.1016/S0966-9795(02)00235-2
36
Jiang J F, Xiao G F, Wang Y, et al. High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state [J]. J. Alloys Compd., 2019, 784: 394
doi: 10.1016/j.jallcom.2019.01.093
37
Yun D W, Seo S M, Jeong H W, et al. The cyclic oxidation behaviour of Ni-based superalloy GTD-111 with sulphur impurities at 1100oC [J]. Corros. Sci., 2015, 90: 392
doi: 10.1016/j.corsci.2014.10.030
38
Parimin N, Hamzah E. High temperature cyclic oxidation of Ni-based 800H superalloy at 700oC in air [A]. IOP Conference Series: Materials Science and Engineering [C]. Pahang: International Conference on Sustainable Materials, 2020, 957: 012013
39
Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications [J]. Acta Mater., 2011, 59: 225
doi: 10.1016/j.actamat.2010.09.027
40
Karunaratne M S A, Carter P, Reed R C. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300oC [J]. Mater. Sci. Eng., 2000, A281: 229
41
Hu Y B, Cao T S, Cheng C Q, et al. Oxidation behavior of a single-crystal Ni-based superalloy over the temperature range of 850oC-900oC in air [J]. Appl. Surf. Sci., 2019, 484: 209
doi: 10.1016/j.apsusc.2019.04.089
42
Zhao Z. Isothermal oxidation behavior of DZ792 superalloy [D]. Shenyang: Northeastern University, 2009
赵 卓. DZ792合金的恒温氧化行为研究 [D]. 沈阳: 东北大学, 2009
43
Venkatu D A, Poteat L E. Diffusion of titanium of single crystal rutile [J]. Mater. Sci. Eng., 1970, 5: 258
doi: 10.1016/0025-5416(70)90014-5
44
Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
45
Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
46
Lv M L, Ni S, Wang Z, et al. Cation ordering/disordering effects upon photocatalytic activity of CrNbO4, CrTaO4, Sr2CrNbO6 and Sr2CrTaO6 [J]. Int. J. Hydrogen Energy, 2016, 41: 1550
doi: 10.1016/j.ijhydene.2015.11.057
47
Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.): 18
Pieraggi B, Dabosi F. High-temperature oxidation of a single crystal Ni-base superalloy [J]. Werkst. Korros., 1987, 38: 584
doi: 10.1002/maco.19870381006
49
Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 194
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 194
50
Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007: 470
张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 470
51
Brandes E A, Brook G B. Smithells Metals Reference Book [M]. 7th Ed., Oxford: Butterworth-Heinemann, 1992: 13
52
Atkinson A, Taylor R I. The self-diffusion of Ni in NiO and its relevance to the oxidation of Ni [J]. J. Mater. Sci., 1978, 13: 427
doi: 10.1007/BF00647789
53
Karunaratne M S A, Reed R C. Interdiffusion of the platinum-group metals in nickel at elevated temperatures [J]. Acta Mater., 2003, 51: 2905
doi: 10.1016/S1359-6454(03)00105-8