|
|
Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel |
QI Xiaoyong1,2, LIU Wenbo1,2( ), HE Zongbei3, WANG Yifan3, YUN Di1,2 |
1.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China 2.Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University, Xi'an 710049, China 3.State Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China |
|
Cite this article:
QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel. Acta Metall Sin, 2023, 59(11): 1513-1522.
|
Abstract UN is a candidate fuel for light water reactors and fast reactors due to its high density, high thermal conductivity, and high melting point. The highly densified UN particles are desirable to strengthen the fuel structure and delay the release of fission gas. However, the mechanism of densification during sintering is still unclear from the view point of existing experimental results. Therefore, it is essential to simulate the densification process during sintering using the phase-field (PF) method. In the present work, the rigid body action of translation and rotation was introduced in the PF model. This work analyzed the effects of the advection flux of rigid body motion on the formation of the sintered neck, the equilibrium dihedral angle, and the densification during sintering. The simulation results showed that the introduction of advection flux of rigid body motion accelerated the formation of the sintering neck in the early stage of sintering, while such an effect was not obvious in the later stage. The equilibrium dihedral angle of the model with advection flux was consistent with that of the model, which only contained surface diffusion. The densification stomatal shrinkage was divided into three stages: surface diffusion dominated stage, advection flux dominated stage, and final densification progress. The increase in translational mobility accelerated the densification speed and increased the final density after densification, although this effect reached saturation after a certain threshold. Stable trigeminal grain boundaries (GBs) with 120° were formed when densification was completed. The characteristics of the sintered morphology of polycrystalline UN, such as trigeminal GBs, pore shrinkage, and densification, were consistent with the experimental results.
|
Received: 18 April 2022
|
|
Fund: Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Phy-sics (NSAF Joint Fund)(U2130105);China Postdoctoral Science Foundation(2019M663738);State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KF201713);Innovative Scientific Program of China National Nuclear Corporation |
Corresponding Authors:
LIU Wenbo, associate professor, Tel: (029)82668948, E-mail: liuwenbo@xjtu.edu.cn
|
1 |
Uno M, Nishi T, Takano M. Thermodynamic and thermophysical properties of the actinide nitrides [J]. Compr. Nucl. Mater., 2012, 2: 61
|
2 |
Szpunar B, Szpunar J A. Thermal conductivity of uranium nitride and carbide [J]. Int. J. Nucl. Energy, 2014, 2014: 178360
|
3 |
Yang K, Kardoulaki E, Zhao D, et al. Uranium nitride (UN) pellets with controllable microstructure and phase-fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties [J]. J. Nucl. Mater., 2021, 557: 153272
doi: 10.1016/j.jnucmat.2021.153272
|
4 |
Yin B Y, Qu Z H. Property of uranium nitride ceramic pellet by hot press sintering [J]. Atom. Energy Sci. Technol., 2014, 48: 1850
|
|
尹邦跃, 屈哲昊. 热压烧结UN陶瓷芯块的性能 [J]. 原子能科学技术, 2014, 48: 1850
doi: 10.7538/yzk.2014.48.10.1850
|
5 |
Mclaren J R, Atkinson P W M. The sintering of uranium mononitride [J]. J. Nucl. Mater., 1965, 17: 142
doi: 10.1016/0022-3115(65)90031-0
|
6 |
Muta H, Kurosaki K, Uno M, et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique [J]. J. Mater. Sci., 2008, 43: 6429
doi: 10.1007/s10853-008-2731-x
|
7 |
Malkki P, Jolkkonen M, Hollmer T, et al. Manufacture of fully dense uranium nitride pellets using hydride derived powders with spark plasma sintering [J]. J. Nucl. Mater., 2014, 452: 548
doi: 10.1016/j.jnucmat.2014.06.012
|
8 |
Johnson K D, Wallenius J, Jolkkonen M, et al. Spark plasma sintering and porosity studies of uranium nitride [J]. J. Nucl. Mater., 2016, 473: 13
doi: 10.1016/j.jnucmat.2016.01.037
|
9 |
Johnson K D, Lopes D A. Grain growth in uranium nitride prepared by spark plasma sintering [J]. J. Nucl. Mater., 2018, 503: 75
doi: 10.1016/j.jnucmat.2018.02.041
|
10 |
Mullins W W. Two‐dimensional motion of idealized grain boundaries [J]. J. Appl. Phys., 1956, 27: 900
doi: 10.1063/1.1722511
|
11 |
Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 446
|
12 |
German R M. Sintering Theory and Practice [M]. New York: Wiley-Interscience, 1996: 130
|
13 |
Kazaryan A, Wang Y, Patton B R. Generalized phase field approach for computer simulation of sintering: Incorporation of rigid-body motion [J]. Scr. Mater., 1999, 41: 487
doi: 10.1016/S1359-6462(99)00179-7
|
14 |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
|
15 |
Ishii A, Yamanaka A, Miyoshi E, et al. Efficient estimation of material parameters using DMC-BO: Application to phase-field simulation of solid-state sintering [J]. Mater. Today Commun., 2022, 30: 103089
|
16 |
Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
|
17 |
Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline systems [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 065003
|
18 |
Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
|
19 |
German R M. Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems [J]. Crit. Rev. Solid State Mater. Sci., 2010, 35: 263
doi: 10.1080/10408436.2010.525197
|
20 |
Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
|
21 |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
|
22 |
Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
|
23 |
Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 065005
|
24 |
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
doi: 10.1016/0001-6160(79)90196-2
|
25 |
Biner S B. Programming Phase-Field Modeling [M]. Switzerland: Springer International Publishing, 2017: 18
|
26 |
Holt J B, Almassy M Y. Nitrogen diffusion in uranium nitride as measured by alpha particle activation of 15N [J]. J. Am. Ceram. Soc., 1969, 52: 631
doi: 10.1111/jace.1969.52.issue-12
|
27 |
Bocharov D, Gryaznov D, Zhukovskii Y F, et al. Ab initio simulations of oxygen interaction with surfaces and interfaces in uranium mononitride [J]. J. Nucl. Mater., 2013, 435: 102
doi: 10.1016/j.jnucmat.2012.12.031
|
28 |
Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
|
29 |
Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
|
|
孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295
doi: 10.11900/0412.1961.2019.00440
|
30 |
Shi R P, Wood M, Heo T W, et al. Towards understanding particle rigid-body motion during solid-state sintering [J]. J. Eur. Ceram. Soc., 2021, 41: 211
doi: 10.1016/j.jeurceramsoc.2021.09.039
|
31 |
Sun Z Y, Wang Y T, Liu W B. Phase-field simulation of the interaction between pore and grain boundary [J]. Acta Metall. Sin., 2020, 56: 1643
doi: 10.11900/0412.1961.2020.00120
|
|
孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟 [J]. 金属学报, 2020, 56: 1643
doi: 10.11900/0412.1961.2020.00120
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|