Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1513-1522    DOI: 10.11900/0412.1961.2022.00182
Current Issue | Archive | Adv Search |
Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel
QI Xiaoyong1,2, LIU Wenbo1,2(), HE Zongbei3, WANG Yifan3, YUN Di1,2
1.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2.Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University, Xi'an 710049, China
3.State Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China
Cite this article: 

QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel. Acta Metall Sin, 2023, 59(11): 1513-1522.

Download:  HTML  PDF(1469KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

UN is a candidate fuel for light water reactors and fast reactors due to its high density, high thermal conductivity, and high melting point. The highly densified UN particles are desirable to strengthen the fuel structure and delay the release of fission gas. However, the mechanism of densification during sintering is still unclear from the view point of existing experimental results. Therefore, it is essential to simulate the densification process during sintering using the phase-field (PF) method. In the present work, the rigid body action of translation and rotation was introduced in the PF model. This work analyzed the effects of the advection flux of rigid body motion on the formation of the sintered neck, the equilibrium dihedral angle, and the densification during sintering. The simulation results showed that the introduction of advection flux of rigid body motion accelerated the formation of the sintering neck in the early stage of sintering, while such an effect was not obvious in the later stage. The equilibrium dihedral angle of the model with advection flux was consistent with that of the model, which only contained surface diffusion. The densification stomatal shrinkage was divided into three stages: surface diffusion dominated stage, advection flux dominated stage, and final densification progress. The increase in translational mobility accelerated the densification speed and increased the final density after densification, although this effect reached saturation after a certain threshold. Stable trigeminal grain boundaries (GBs) with 120° were formed when densification was completed. The characteristics of the sintered morphology of polycrystalline UN, such as trigeminal GBs, pore shrinkage, and densification, were consistent with the experimental results.

Key words:  phase-field simulation      UN      sintering      densification      advection flux     
Received:  18 April 2022     
ZTFLH:  TG148  
Fund: Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Phy-sics (NSAF Joint Fund)(U2130105);China Postdoctoral Science Foundation(2019M663738);State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KF201713);Innovative Scientific Program of China National Nuclear Corporation
Corresponding Authors:  LIU Wenbo, associate professor, Tel: (029)82668948, E-mail: liuwenbo@xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00182     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1513

Fig.1  Schematic of vacancy diffusion simulated in sintering simulation (Arrows show the paths of vacancy diffusion along free surfaces and grain boundaries)
ParameterValueUnitRef.
Ds7.5 × 10-12m2·s-1[26]
Dgb0.01Dsm2·s-1
γs1.6J·m-2[27]
γgb0.8J·m-2[27]
δ6nm[27]
Table 1  Physical parameters of UN at 1823 K[26,27]
ParameterValueParameterValue
A˜17m˜t30-100
B˜1m˜r1
κ˜η6.75L˜1
κ˜ρ20.25Δx = Δy1
M˜6750Δt2 × 10-5
Table 2  Non-dimensional parameters used in simulation
Fig.2  Simulated effects of advection flux on morphologies of two grains with the boundary between them by the phase-field methods of without (a-c) and with (d-f) advection flux (a, d) 2 × 104 step (b, e) 50 × 104 step (c, f) 100 × 104 step
Fig.3  Logarithmic growth curves of particle sintered neck methods for without and with advection flux (l—neck length, t'—time step)
Fig.4  Simulated equilibrium dihedral angles by two sintering models
(a) without advection flux (b) with advection flux
Fig.5  Simulated evolutions of a pore in the grain boundary between two particles by the phase-field methods of without (a-c) and with (d-f) advection flux (a, d) 10 × 104 step (b, e) 20 × 104 step (c, f) 30 × 104 step
Fig.6  Simulated pore shrinkage curve of grain boundary between two particles by the advection flux model
Fig.7  Simulated evolutions of three particles by the phase-field methods of advection flux
(a) 0 step (b) 2 × 104 step
(c) 4 × 104 step (d) 6 × 104 step
Fig.8  Simulated evolutions of advection flux on morphologies of three particles (The blue-green part shows the effect of the advective flux, and the closer to the blue, the stronger the effect of the advective flux)
(a) 0 step (b) 2 × 104 step
(c) 4 × 104 step (d) 6 × 104 step
Fig.9  Simulated pore shrinkage curve of grain boundary among three particles by the advection flux model
Fig.10  Pore shrinkage curves for different translation mobilities (mt)
Fig.11  Simulated evolutions of four particles by the phase-field methods of advection flux
(a) 1 × 104 step (b) 25 × 104 step
(c) 50 × 104 step (d) 100 × 104 step
Fig.12  Simulated evolutions of multi-grain by the phase-field methods with unimodal particle size distribution
(a) 1 × 104 step (b) 40 × 104 step
(c) 80 × 104 step (d) 120 × 104 step
(e) 160 × 104 step (f) 200 × 104 step
1 Uno M, Nishi T, Takano M. Thermodynamic and thermophysical properties of the actinide nitrides [J]. Compr. Nucl. Mater., 2012, 2: 61
2 Szpunar B, Szpunar J A. Thermal conductivity of uranium nitride and carbide [J]. Int. J. Nucl. Energy, 2014, 2014: 178360
3 Yang K, Kardoulaki E, Zhao D, et al. Uranium nitride (UN) pellets with controllable microstructure and phase-fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties [J]. J. Nucl. Mater., 2021, 557: 153272
doi: 10.1016/j.jnucmat.2021.153272
4 Yin B Y, Qu Z H. Property of uranium nitride ceramic pellet by hot press sintering [J]. Atom. Energy Sci. Technol., 2014, 48: 1850
尹邦跃, 屈哲昊. 热压烧结UN陶瓷芯块的性能 [J]. 原子能科学技术, 2014, 48: 1850
doi: 10.7538/yzk.2014.48.10.1850
5 Mclaren J R, Atkinson P W M. The sintering of uranium mononitride [J]. J. Nucl. Mater., 1965, 17: 142
doi: 10.1016/0022-3115(65)90031-0
6 Muta H, Kurosaki K, Uno M, et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique [J]. J. Mater. Sci., 2008, 43: 6429
doi: 10.1007/s10853-008-2731-x
7 Malkki P, Jolkkonen M, Hollmer T, et al. Manufacture of fully dense uranium nitride pellets using hydride derived powders with spark plasma sintering [J]. J. Nucl. Mater., 2014, 452: 548
doi: 10.1016/j.jnucmat.2014.06.012
8 Johnson K D, Wallenius J, Jolkkonen M, et al. Spark plasma sintering and porosity studies of uranium nitride [J]. J. Nucl. Mater., 2016, 473: 13
doi: 10.1016/j.jnucmat.2016.01.037
9 Johnson K D, Lopes D A. Grain growth in uranium nitride prepared by spark plasma sintering [J]. J. Nucl. Mater., 2018, 503: 75
doi: 10.1016/j.jnucmat.2018.02.041
10 Mullins W W. Two‐dimensional motion of idealized grain boundaries [J]. J. Appl. Phys., 1956, 27: 900
doi: 10.1063/1.1722511
11 Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 446
12 German R M. Sintering Theory and Practice [M]. New York: Wiley-Interscience, 1996: 130
13 Kazaryan A, Wang Y, Patton B R. Generalized phase field approach for computer simulation of sintering: Incorporation of rigid-body motion [J]. Scr. Mater., 1999, 41: 487
doi: 10.1016/S1359-6462(99)00179-7
14 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
15 Ishii A, Yamanaka A, Miyoshi E, et al. Efficient estimation of material parameters using DMC-BO: Application to phase-field simulation of solid-state sintering [J]. Mater. Today Commun., 2022, 30: 103089
16 Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
17 Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline systems [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 065003
18 Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
19 German R M. Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems [J]. Crit. Rev. Solid State Mater. Sci., 2010, 35: 263
doi: 10.1080/10408436.2010.525197
20 Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
21 Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
22 Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
23 Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 065005
24 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
doi: 10.1016/0001-6160(79)90196-2
25 Biner S B. Programming Phase-Field Modeling [M]. Switzerland: Springer International Publishing, 2017: 18
26 Holt J B, Almassy M Y. Nitrogen diffusion in uranium nitride as measured by alpha particle activation of 15N [J]. J. Am. Ceram. Soc., 1969, 52: 631
doi: 10.1111/jace.1969.52.issue-12
27 Bocharov D, Gryaznov D, Zhukovskii Y F, et al. Ab initio simulations of oxygen interaction with surfaces and interfaces in uranium mononitride [J]. J. Nucl. Mater., 2013, 435: 102
doi: 10.1016/j.jnucmat.2012.12.031
28 Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
29 Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295
doi: 10.11900/0412.1961.2019.00440
30 Shi R P, Wood M, Heo T W, et al. Towards understanding particle rigid-body motion during solid-state sintering [J]. J. Eur. Ceram. Soc., 2021, 41: 211
doi: 10.1016/j.jeurceramsoc.2021.09.039
31 Sun Z Y, Wang Y T, Liu W B. Phase-field simulation of the interaction between pore and grain boundary [J]. Acta Metall. Sin., 2020, 56: 1643
doi: 10.11900/0412.1961.2020.00120
孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟 [J]. 金属学报, 2020, 56: 1643
doi: 10.11900/0412.1961.2020.00120
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[8] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[9] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[10] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[11] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[13] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[14] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[15] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
No Suggested Reading articles found!