|
|
Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys |
HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong( ), LI Huijun, WANG Zumin, LIU Yongchang |
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
|
Cite this article:
HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys. Acta Metall Sin, 2023, 59(10): 1346-1354.
|
Abstract Ni3Al-based superalloys are widely used in aero-engine parts. In addition to having a good temperature bearing capacity, the oxidation resistance of the alloy is also high. In this work, a multiphase Ni3Al-based superalloy was selected as the experimental material. Three micro-regions (γ' + γ dendrite, interdendritic β phase, and γ' envelope) containing different phases were obtained by heat treatment. The isothermal oxidation behavior of the micro-regions was studied under 1000oC, where the three micro-regions exhibited different oxidation behaviors at the initial stage of oxidation. The γ' envelope has an obvious double-layer oxide scale showing a cellular bulge. The outer layer is a mixed layer (NiO, NiFe2O4, and Al2O3), and the inner layer is a single Al2O3 layer. However, the γ' + γ dendrite and the interdendritic β phase form a single layer of the Al2O3 film. With increasing isothermal oxidation time, the oxide scale composition of the three micro-regions gradually tends to be the same, forming a dense single Al2O3 layer.
|
Received: 18 November 2021
|
|
Fund: National Natural Science Foundation of China(51774212);National Natural Science Foundation of China(52122409);Natural Science Foundation of Tianjin City(20JCYBJC00950) |
Corresponding Authors:
LI Chong, professor, Tel: 13021398676, E-mail: lichongme@tju.edu.cn
|
1 |
Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermetallics, 2000, 8: 1329
doi: 10.1016/S0966-9795(00)00078-9
|
2 |
Qian M, Luo H L, Ding C H, et al. The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy [J]. Mater. Charact., 2017, 132: 458
doi: 10.1016/j.matchar.2017.09.015
|
3 |
Raju S V, Godwal B K, Singh A K, et al. High-pressure strengths of Ni3Al and Ni-Al-Cr [J]. J. Alloys Compd., 2018, 741: 642
doi: 10.1016/j.jallcom.2018.01.142
|
4 |
Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
doi: 10.1557/mrs2003.189
|
5 |
Wu Y T, Li C, Xia X C, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'- strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67: 95
doi: 10.1016/j.jmst.2020.06.025
|
6 |
Wu Y T, Li C, Li Y F, et al. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 553
doi: 10.1007/s12613-020-2177-y
|
7 |
Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
|
|
吴 静, 刘永长, 李 冲 等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21
|
8 |
Pei J L, Li Y F, Li C, et al. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52: 162
doi: 10.1016/j.jmst.2020.04.006
|
9 |
Takeyama M, Liu C T. Surface oxidation and ductility loss in boron-doped Ni3Al at 760oC [J]. Scr. Metall., 1989, 23: 727
doi: 10.1016/0036-9748(89)90520-6
|
10 |
Liu C T, White C L. Dynamic embrittlement of boron-doped Ni3Al alloys at 600oC [J]. Acta Metall., 1987, 35: 643
doi: 10.1016/0001-6160(87)90187-8
|
11 |
Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68: 91
doi: 10.1016/j.jmst.2020.08.013
|
12 |
Mu N, Izumi T, Zhang L, et al. Compositional factors affecting the oxidation behavior of Pt-modified γ-Ni plus γ'-Ni3Al-based alloys and coatings [J]. Mater. Sci. Forum, 2008, 595-598: 239
doi: 10.4028/www.scientific.net/MSF.595-598
|
13 |
Choi S C, Cho H J, Kim Y J, et al. High-temperature oxidation behavior of pure Ni3Al [J]. Oxid. Met., 1996, 46: 51
doi: 10.1007/BF01046884
|
14 |
Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys [J]. Acta Metall. Sin., 2011, 47: 1216
|
|
邱 军, 赵文金, Guilbert T 等. 3种锆合金的高温氧化行为 [J]. 金属学报, 2011, 47: 1216
|
15 |
Moussa S O, Morsi K. High-temperature oxidation of reactively processed nickel aluminide intermetallics [J]. J. Alloys Compd., 2006, 426: 136
doi: 10.1016/j.jallcom.2006.02.008
|
16 |
Xu Y, Sakurai J, Teraoka Y, et al. Initial oxidation behavior of Ni3Al (210) surface induced by supersonic oxygen molecular beam at room temperature [J]. Appl. Surf. Sci., 2017, 391: 18
doi: 10.1016/j.apsusc.2016.01.259
|
17 |
Huang Z Y, Jiang Y S, Hou A L, et al. Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels [J]. J. Mater. Sci. Technol., 2017, 33: 1531
doi: 10.1016/j.jmst.2017.09.012
|
18 |
Wang X, Szpunar J A. Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N [J]. J. Alloys Compd., 2018, 752: 40
doi: 10.1016/j.jallcom.2018.04.173
|
19 |
Dong H, Ye Z F, Wang P, et al. Effect of cold rolling on the oxidation resistance of T91 steel in oxygen-saturated stagnant liquid lead-bismuth eutectic at 450oC and 550oC [J]. J. Nucl. Mater., 2016, 476: 213
doi: 10.1016/j.jnucmat.2016.04.046
|
20 |
Zhao K, Zhou Y B, Ma Y H, et al. Effect of microstructure on the oxidation behavior of two nickel-based superalloys [J]. Corrosion, 2005, 61: 961
doi: 10.5006/1.3280896
|
21 |
Bouchaud B, Balmain J, Barrere D, et al. Effect of water drops on the oxidation mechanisms of a ceria coated nickel-based superalloy [J]. Corros. Sci., 2013, 68: 176
doi: 10.1016/j.corsci.2012.11.010
|
22 |
da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
doi: 10.1016/S0010-938X(97)00158-3
|
23 |
Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of stainless steel hydrothermal corrosion [J]. Corrosion, 2002, 58: 739
doi: 10.5006/1.3277656
|
24 |
Guo J Y, Li Y F, Li C, et al. Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys [J]. Mater. Charact., 2021, 171: 110748
doi: 10.1016/j.matchar.2020.110748
|
25 |
Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of nickel hydrothermal corrosion [J]. Corrosion, 2002, 58: 225
doi: 10.5006/1.3279873
|
26 |
Kim J H, Hwang I S. Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water [J]. Nucl. Eng. Des., 2005, 235: 1029
doi: 10.1016/j.nucengdes.2004.12.002
|
27 |
Song P, Chen R, Feng J, et al. Microstructure analysis of initial alumina of Pt-modified aluminide coatings on Ni-based alloy [J]. Acta Metall. Sin., 2017, 53: 1504
|
|
宋 鹏, 陈 榕, 冯 晶 等. 镍基合金表面Pt改性铝化物涂层的初期Al2O3微观结构分析 [J]. 金属学报, 2017, 53: 1504
|
28 |
Niu Y, Hou Y. Characterization of pore development at Al2O3/FeAl interface during high temperature oxidation [J]. Acta Metall. Sin., 2003, 39: 1065
|
|
牛 焱, 侯 嫣. 高温氧化时Al2O3/FeAl界面孔洞形成过程的分析 [J]. 金属学报, 2003, 39: 1065
|
29 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006: 2
|
30 |
Bei H, George E P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy [J]. Acta Mater., 2005, 53: 69
doi: 10.1016/j.actamat.2004.09.003
|
31 |
Konrad C H, Völkl R, Glatzel U. Determination of oxygen diffusion along nickel/zirconia phase boundaries by internal oxidation [J]. Oxid. Met., 2012, 77: 149
doi: 10.1007/s11085-011-9278-y
|
32 |
Liu Y C, Wei W F, Benum L, et al. Oxidation behavior of Ni-Cr-Fe-based alloys: Effect of alloy microstructure and silicon content [J]. Oxid. Met., 2010, 73: 207
doi: 10.1007/s11085-009-9172-z
|
33 |
Ding Q Q, Shen Z J, Xiang S S, et al. In-situ environmental TEM study of γ'-γ phase transformation induced by oxidation in a nickelbased single crystal superalloy [J]. J. Alloys Compd., 2015, 651: 255
doi: 10.1016/j.jallcom.2015.07.017
|
34 |
Zhang J Y. Physical Chemistry in Metallurgy [M]. Beijing: Metallurgical Industry Press, 2004: 312
|
|
张家芸. 冶金物理化学 [M]. 北京: 冶金工业出版社, 2004: 312
|
35 |
Wallwork G R, Hed A Z. Some Limiting factors in the use of alloys at high temperatures [J]. Oxid. Met., 1971, 3: 171
doi: 10.1007/BF00603485
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|