Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 815-820     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure-tensile properties-processing technology relationships of Ti-43Al-9V-0.3Y alloy
;yuyong chen;BaoHui Li
哈尔滨工业大学
Cite this article: 

yuyong chen; BaoHui Li. Microstructure-tensile properties-processing technology relationships of Ti-43Al-9V-0.3Y alloy. Acta Metall Sin, 2008, 44(7): 815-820 .

Download:  PDF(2462KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  As-cast Ti-43Al-9V-0.3Y alloy is mainly comprised of γ phase, besides minor α2, B2 and YAl2. The alloy is fine-grained and mainly consists of lamellar structure (approximately 85 vol%). The mean colony size is about 80 μm. There is evidence of the β phase and γ phase along colony boundaries and disperse fine YAl2 particles. There exist some B2 precipitations within the lamellar colonies. As-forged Ti-43Al-9V-0.3Y alloy has the streamline near gamma (NG) microstructure drastically refined with DRX γ grains of 1~5μm. The B2 and YAl2 phases are broken and elongated and the lamellar colonies diminish. As-rolled Ti-43Al-9V-0.3Y alloy has the fine NG microstructure with γ grains of about 20μm. The streamline structure vanishes. The B2 phases with size of 8μm are distributed in the network shape along γ grains and the YAl2 particles are disperse. As-cast Ti-43Al-9V-0.3Y alloy has the ultimate tensile strength of about 510.6 and 425.8MPa, the elongation of 0.5% and 5.7%, at room temperature and 700℃, respectively. After forging and rolling, the tensile properties are greatly improved. At room temperature, the strength of as-forged and as-rolled material increases about 89~132MPa, and the elongation increases from 0.5% to 1% and 1.2%, respectively. At 700℃, the strength as-rolled material increases about 63~72MPa and the elongation increases from 5.7% to 7.9%. The improvement of the tensile properties is attributed to the microstructural refinement and higher density induced by forging and rolling process.
Key words:  TiAl alloy      processing technology      microstructure      tensile properties      
Received:  21 September 2007     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/815

[1]Husng Z H.Trans Nonferrous Met Soc China,2003;13: 1325
[2]Maziasz P J,Liu C T.Metall Mater Trans,1998;29A:105
[3]Edward A L.Intermetallics,2000;8:1339
[4]Appel F,Oehring M,Paul J D H,Klinkenberg C,Cameiro T.Intermetallics,2004;12:791
[5]Semiatin S L,Seetharaman V,Weiss I.Mater Sci Eng, 1998;A243:1
[6]Oh J,Pyo S G,Lee S.J Mater Sci,2003;38:3647
[7]Bartels A,Kestler H,Clemens H.Mater Sci Eng,2002; A329-331:153
[8]Gerling R,Bartels A,Clements H,Kestler H.Inter- metallics,2004;12:275
[9]Chen Y Y,Kong F T,Hart J C,Chen Z Y,Tian J.Inter- metallics,2005;13:263
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!