Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (5): 598-602     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure of Ultra-High Strength Steel 300M Fabricated by Laser Melting Deposition Manufacturing
H.M. Wang;
北京航空航天大学材料科学与工程学院
Cite this article: 

H.M. Wang. Microstructure of Ultra-High Strength Steel 300M Fabricated by Laser Melting Deposition Manufacturing. Acta Metall Sin, 2008, 44(5): 598-602 .

Download:  PDF(3062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thin plate of ultra-high strength steel 300M was fabricated by the laser melting deposition manufacturing process. Microstructure of the steel was analyzed by OM and SEM. The Rockwell hardness (HRC) profile was measured along depositing direction. Results showed that the as-deposited 300M steel plate had a rapidly solidified cellular dendrite structure. Solid-state phase transformation microstructure of the 300M steel varied notably with the increasing deposition height, with a tempered martensite and bainite mixed structure in the bottom part, a mixture of carbide-free bainite and island-like matensite-austenite duplex structure in the middle-lower part and a mixed martensite-bainite structure in the middle-upper part. The hardness profile varied as stepwise with the increasing deposition height. The step-like hardness profile and the variable post-deposition transformation microstructures along the depositing direction were caused by the particular cyclic thermal behavior of the laser melting deposition manufacturing process.
Key words:  laser melting deposition manufacturing      ultra-high strength steel      microstructure      
Received:  15 August 2007     
ZTFLH:  TG142  
  TG665  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I5/598

[1]Shi C X,Li H D,Zhou L.Material Science and Engineer- ing Handbook.Beijing:Chemical Industry Press,2003: 6 (师昌绪,李恒德,周廉.材料科学与工程手册.北京:化学工业出版社,2003:6)
[2]Edit Committee of China Aeronautical Materials Hand- book.China Aeronautical Materials Handbook.Vol.1,2nd ed.,Beijing:Standards Press of China,2002:282 (《中国航空材料手册》编辑委员会.中国航空材料手册.第1卷,第2版,北京:中国标准出版社,2002:282)
[3]Xiang C Y.Structural Steel.Beijing:Metallurgical Indus- try Press,1999:281 (项程云.合金结构钢.北京:冶金工业出版社,1999:281)
[4]Wang H M.Aeronaut Manuf Technol,2005;(12):26 (王华明.航空制造技术,2005;(12):26)
[5]Wang H M,Zhang L Y,Li A,Cai L X,Tang H B,LüX D.World Sci-Technol R & D,2004;26(3):27 (王华明,张凌云,李安,蔡良续,汤海波,吕旭东.世界科技研究与发展,2004;26(3):27)
[6]Abbott D H.Met Powder Rep,1998;53(2):24
[7]Yan M,Zhang S Q,Wang H M.Acta Metall Sin,2007;43: 472 (颜敏,张述泉,王华明.金属学报,2007;43:472)
[8]Chang L C,Bhadeshia H K D H.Mater Sci Eng,1994; A184:L17
[9]Griffith M L,Schlienger M E,Harwell L D,Oliver M S, Baldwin M D,Ensz M T,Essien M,Brooks J,Robino C V,Smugeresky J E,Hofmeister W H,Wert M J,Nelson D V.Mater Des,1999;20:1073
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!