Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (4): 397-402     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure and performance of AZ4.51-Ca magnesium alloy sheets
Chen Hongmei;Suk-Bong Kang;Huashun Yu;Guanghui Min
山东大学
Cite this article: 

Chen Hongmei; Suk-Bong Kang; Huashun Yu; Guanghui Min. Microstructure and performance of AZ4.51-Ca magnesium alloy sheets. Acta Metall Sin, 2008, 44(4): 397-402 .

Download:  PDF(1165KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Magnesium sheets produced by different process were studied in this paper. The microstructure and mechanical properties of the alloys were analyzed by optical microscope (OM)、scanning electron microscope (SEM)、transmission electron microscope (TEM) 、digital microhardness tester and electron test equipment. The conventional casting ingot and twin rolling casting strip were all can be hot rolled at certain temperature and get magnesium sheets with 1mm thickness had refined and uniform deformation microstructure, the alloys were recrystallized after heat treatment and got equiaxed structure. The alloys had good mechanical properties after hot rolling, the strength and the elongation of twin roll casting alloy were evident higher than those of the conventional casting alloy. The tensile strength, yield strength and elongation of twin roll casting alloy and conventional casting alloy after hot rolling and 350℃×10min annealing were 334.4MPa, 229.3MPa, 23.8%, and 270.8MPa, 174.4MPa, 10.8%, respectively. The fracture surface of the alloys all took on ductile fracture contains lacerated ridge and ductile sockets, but the twin roll casting alloy had more evidence and smaller ductile sockets, this because the grain size of twin roll casting alloy was finer than that of conventioanal casting alloy.
Key words:  AZ4.51-Ca alloy      twin roll casting      hot rolling      microstructure      mechanical properties      
Received:  29 August 2007     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I4/397

[1]Park S S,Lee J G,Park Y S,Kim N J.Mater Sci Forum, 2003;419-422:599
[2]Alien R V,East D R,Johnson T J,Borbidge W E,Liang D.In:Hryn J N,ed.,Magnesium Technology 2001,War- rendale,Pennsylvania:TMS,2001:75
[3]Armstrong R W.Acta Metall,1968;16:347
[4]Barnett M R,Keshavarz Z,Beer A G,Atwell D.Acta Mater,2004;52:5093
[5]Jain A,Duygulu O,Brown D W,ToméC N,Agnew S R. Mater Sci Eng,in press
[6]Chang T C,Wang J Y,Chia-Ming O,Lee S.J Mater Process Technol,2003;140:588
[7]Luo A A.Int Mater Rev,2004;49(1):13
[8]Suzuki A,Saddock N D,Jones J W,Pollock T M.Scr Mater,2004;51:1005
[9]Ninomiya R,Ojiro T,Kubota K.Acta Metall Mater,1995; 43:669
[10]Terada Y,Ishimatsu N,Sota R,Sato T,Ohori K.Mater Sci Forum,2003;419-422:459
[11]Mural T,Oguri H,Matsuoka S.Mater Sci Forum,2005; 488-489:515
[12]Seale G,Carter J,Verma R,Krajewski P,Essadiqi E, Javaid A,Galvani C,Zarandi F,Yue S.In:Beals R S, ed.,Magnesium Technology 2007,Warrendale,Pennsyl- vania:TMS,2007:17
[13]Yang P,Meng L,Mao W M,Cai Q W.Trans Mater Heat Treat,2005;26(2):34 (杨平,孟利,毛卫民,蔡庆武.材料热处理学报,2005;26(2):34)
[14]Yu K,Li W X.Met Heat Treat,2002;27(5):8 (余琨,黎文献.金属热处理,2002;27(5):8)
[15]Fu D F,Xu F Y,Xia W J,Liu T X,Chen Z H.Nat Sci J Xiangtan Univ,2005;27(4):57 (傅定发,许芳艳,夏伟军,刘天喜,陈振华.湘潭大学自然科学学报,2005;27(4):57)
[16]Pan F S,Han E H.High Properties Wrought Magnesium Alloy and Processing Technology.Beijing:Science Press, 2007:18 (潘复生,韩恩厚.高性能变形镁合金及加工技术.北京:科学出版社,2007:18)
[17]Bae G T,Park S S,Kang D H,Bae J H,Kim N J.In: Beals R S,ed.,Magnesium Technology 2007,Warrendale, Pennsylvania:TMS,2007:89
[18]Park S S,Oh Y S,Kang D H,Kim N J.Mater Sci Eng, 2007;A449-451:352
[19]Ninomiya R,Ojiro T,Kubota K.Acta Metall Mater,1995; 43:669
[20]Yang G Y,Hao Q T,Jie W Q,Jia W P,He Z.Acta Metall Sin,2005;41:933 (杨光昱,郝启堂,介万奇,贾文平,何志.金属学报,2005;41:933)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!