Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (12): 1419-1423    DOI:
论文 Current Issue | Archive | Adv Search |
PREPARATION OF NANOPOROUS Cu COATINGS WITH HIGH SPECIFIC SURFACE AREA
KAN Yide; LIU Wenjin; ZHONG Minlin; MA Mingxing; KANG Ruiquan; GU Yu
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University
Cite this article: 

KAN Yide LIU Wenjin ZHONG Minlin MA Mingxing KANG Ruiquan GU Yu. PREPARATION OF NANOPOROUS Cu COATINGS WITH HIGH SPECIFIC SURFACE AREA. Acta Metall Sin, 2008, 44(12): 1419-1423.

Download:  PDF(1832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mn-Cu alloy coatings with fine shape, low dilute ratio and refined microstructure were fabricated on medium carbon steel substrate by means of laser processing, and then treated by electrochemical etching to selectively dissolve Mn atoms in the coatings. Nanoporous Cu coatings with high specific surface area were finally achieved. The sizes of the pores in the etched coatings are mainly ranging from 30 to 50 nm, and the initial composition of coatings has a great effect on the morphology of the nanoporous Cu coatings.

Key words:  nanoporous Cu coatings      laser processing      high specific surface area      microstructure     
Received:  14 April 2008     
ZTFLH: 

TB383

 
  TG665

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I12/1419

[1]Biener J,Hodge A M,Hayes J R,Volkert C A,Zepeda- Ruiz L A.Nano Lett,2006;6:2379
[2]Ding Y,Chen M W,Jonah E.J Am Chem Soc,2004;126: 6876
[3]Kan Y D,Liu W J,Zhong M L,Ma M X.Heat Trear Met, 2008;33(3):43 (阚义德,刘文今,钟敏霖,马明星.金属热处理,2008;33(3):431
[4]Sun Y,Xia Y.Nano Lett,2003;3:1569
[5]Jonah E,Aziz M J,Karma A,Dimitrov N,Sieradzki K. Nature,2001;410:450
[6]Huang J F,Sun I W.Adv Funct Mater,2005;15:989
[7]Ding Y,Young J,Jonah E.Adv Mater,2004;16:1897
[8]Pugh D,Dursun A,Corcoran S.J Electrochem Soc,2005; 152B:455
[9]Lu X,Bischoff E,Spolenak R,Balk T J.Scr Mater,2007; 56:557
[10]Jia F L,Yu C F,Deng K J,Zhang L Z.J Phys Chem, 2007;111C:8424
[11]Wu D H,Ren J L,Chen S C.Fundamentals of Modern Materials Processing.Beijing:Tsinghua University Press, 1997:338 (吴德海,任家烈,陈森灿.近代材料加工原理.北京:清华大学出版社,1997:338)
[12]Zhang Y K,Zhou J Z,Ye Y X.Laser Processing Technol- ogy.Beijing:Chemical Industry Press,2004:193 (张永康,周建忠,叶云霞.激光加工技术.北京:化学工业出版社,2004:193)
[13]Zhong M L,Liu W J,Ning G Q,Yang L,Chen Y X.J Mater Process Technol,2004;147:167
[14]Zhong M L,Liu W J,Zhang H J.Wear,2006;260:1349
[15]Lu H B,Li Y,Wang F H.Scr Mater,2007;56:165
[16]Kan Y D,Liu W J,Zhong M L,Ma M X,Zhang W M, Zhang H J.In:Laser Institute of America,ed.,Proceed- ings of Pacific International Conference on Application of Lasers and Optics 2008,Orlando:Laser Institute of America,2008:905
[17]Dursun A,Pugh D V,Corcoran S G.J Electrochem Soc, 2003;150B:355
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!