Please wait a minute...
Acta Metall Sin  2007, Vol. 42 Issue (1): 82-86     DOI:
Research Articles Current Issue | Archive | Adv Search |
Corrosion Behavior and Anticorrosion Mechanism of Cu-Zr-Ti-Ni-Mo Bulk Metallic Glass
Liu Bing;;
华中科技大学材料学院博03级
Cite this article: 

Liu Bing. Corrosion Behavior and Anticorrosion Mechanism of Cu-Zr-Ti-Ni-Mo Bulk Metallic Glass. Acta Metall Sin, 2007, 42(1): 82-86 .

Download:  PDF(239KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  (Cu47Zr11Ti34Ni8)100-xMox (x = 0, 2 at.%) bulk metallic glasses (BMGs) were produced by copper mould casting. The amorphous feature of the samples was characterized by X-ray diffraction (XRD). The corrosion resistance and corrosion mechanism of the two BMGs in 1 mol/L H2SO4 solution open to air were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. It is found that the BMG with 2 at.% Mo exhibited a superior corrosion resistance over the base alloy, as indicated by a considerable increase in pitting potential (Eb) and significant decrease in passive potential (E0) and passive current density (ip) for the Mo-bearing BMG. EIS results revealed that the micro-addition of Mo increased the surface activity and promoted the generation of positive defects (i.e., oxygen vacancies), but suppressed the formation of negative defects at the interfaces between metal/passive film (M/F). As a result, the addition of Mo could speed up the formation of the passive film of Zr-, and Ti-oxides, and stabilize simultaneously the oxides film. Base on point defect model (PDM), a qualitatively kinetic model is established to explain tentatively the effect of micro-additionn of Mo on the improvement of the corrosion resistance of the Cu-based bulk metallic glasses.
Key words:  Cu-based bulk metallic glasses      Micro-addition      Mechanism of corrosion resistance      Passive film      Electr     
Received:  29 March 2006     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V42/I1/82

[1] Lin X H,Johnson W L.J Appl Phys,1995;78:6514
[2] Yim H C,Busch R,Johnson W L.J Appl Phys,1998;83: 7993
[3] Glade S C,Loffler J F,Bossuyt S,Johnson W L.J Appl Phys,2001;89:1573
[4] Inoue A,Zhang W,Zhang T,Kurosaka K.Acta Mater, 2001; 49:2645
[5] Inoue A,Zhang W,Zhang T,Kurosaka K.J Non—Cryst Solids,2002;304:200
[6] Zhang T,Yamamoto T,Inoue A.Mater Trans,2002;43: 3222
[7] Inoue A,Zhang T,Kurosaka K,Zhang W.Mater Trans, 2001;42:1800
[8] Zhang W,Inoue A.Mater Trans,2004;45:1210
[9] Li C F,Saida J,Matsushida M,Inoue A.Scr Mater,2000; 42:923
[10] Zhang Q S,Zhang H F,Deng Y F,Ding B Z,Hu Z Q.Scr Mater,2003;49:273
[11] Yamamoto T,Qin C L,Zhang T,AsamiK,Inoue A.Mater Trans, 2003; 44:1147
[12] Asami K, Teramoto K.Corros Sci, 1979;18:151
[13] Hashimoto K,Asami K,Teramoto K. Corros Sci,1979; 19:3
[14] Qin C L,Asami K,Zhang T,Zhang W,Inoue A.Mater Trans, 2003; 44:1042
[15] Asami K,Qin C L,Zhang T,Inoue A. Mater Sci Eng, 2004;A375—377:235
[16] Asami K,Qin C L,Zhang T,Inoue A.Mater Sci Eng, 2004;A375-377:759
[17] Liu B,Liu L,Sun M,Qiu C L,Chen Q.Acta Metall Sin, 2005;4l:738 (刘兵,柳林,孙民,邱春雷,谌祺.金属学报,2005; 41:738)
[18] Liu B, Liu L. Mater Sci Eng, 2006;A415:286
[19] Liu L, Liu B. Electrochim Acta, 2006; 51:3724
[20] MacDonald J R.Impedance Spectroscopy Emphasizing Solid Materials and Systems.New York:Wiley, 1987
[21] Urquidi-Macdonald M, Macdonald D D.J Electrochem Soc, 1987;134:41
[22] Graham M J.Corros Sci, 1995; 37:1337
[23] Wegrelius L., Falkenberg F, Olefjord L J Electrochem Soc, 1999;146:1397
[24] Goetz R,Landolt D.Electrochim Acta,1984; 29:667
[25] Olefjord I, Brox B, Jelvestam U.J Electrochem Soc, 1985; 132:2854
[26] Fromhold A T J, Cook E L. J Appl Phys, 1967;38:1546
[27] Betova I,Bojinov M,Englund A,Fabricius G,Laitinen T, Makela K,Saario T,Sundholm G.Electrochim Aeta, 2001; 46:3627
[28] Habazaki H,Uozumi M,Konno H,Shimizu K,Nagata S, Asami K, Matsumoto K,Takayama K,Oda Y, Skeldon P, Thompson G E.Electrochim Acta, 2003; 48:3257
[29] Metikos-Hukovic M, Babic R, Paic L J Appl Electrochem. 2000; 30:617
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[4] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[5] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[6] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[7] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[8] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[9] LIU Zhiyuan, WANG Yonggui, ZHAO Chengyu, YANG Ting, XIA Ailin. Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials[J]. 金属学报, 2022, 58(8): 979-991.
[10] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[11] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[12] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[13] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[14] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[15] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
No Suggested Reading articles found!