Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 979-991    DOI: 10.11900/0412.1961.2021.00515
Overview Current Issue | Archive | Adv Search |
Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials
LIU Zhiyuan1,2(), WANG Yonggui2, ZHAO Chengyu2, YANG Ting2, XIA Ailin1,2
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China
2.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article: 

LIU Zhiyuan, WANG Yonggui, ZHAO Chengyu, YANG Ting, XIA Ailin. Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials. Acta Metall Sin, 2022, 58(8): 979-991.

Download:  HTML  PDF(3589KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Skutterudite thermoelectric materials are one of the most promising candidates for critical components in thermoelectric devices because of their excellent electrical transport properties. Thermoelectric devices require p- and n-type skutterudite materials with matching properties. However, the p-type skutterudite materials have considerably worse thermoelectric and mechanical properties than those of n-type. Thus, it is important to enhance the thermoelectric and mechanical properties of p-type skutterudite materials for the development of high-efficiency thermoelectric devices. This study summarizes the recent research progress on the nano-mesoscopic scale regulation of the microstructure for p-type skutterudite thermoelectric materials. The thermoelectric and mechanical properties of p-type skutterudite materials can be notably enhanced by adjusting the microstructure at the nano-mesoscopic scale; thus, providing scientific and technical supports for the thermoelectric device's application.

Key words:  p-type skutterudite thermoelectric material      nano-mesoscopic regulation      microstructure      thermoelectric property     
Received:  29 November 2021     
ZTFLH:  TG132.24  
Fund: National Natural Science Foundation of China(51872006);National Undergraduate Training Programs for Innovation and Entrepreneurship(S202110360181)
About author:  LIU Zhiyuan, associate professor, Tel: (0555)2311570, E-mail: zhiyuanliu826@ahut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00515     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/979

Fig.1  Microstructure regulation methods for p-type skutterudite thermoelectric materials at nano-mesoscopic scale[34,40-46] (MS—melt spinning, MA—mechanical alloying, HP—hot pressing, SPS—spark plasma sintering)
Fig.2  p-type skutterudite materials with low-dimensional nanostructure
(a) SEM image of the La0.5Ce0.5Fe3CoSb12 sample[40]
(b) SEM image of p-type filled skutterudite Ce0.45Nd0.45Fe3.5Co0.5Sb12 powder after ball milling for 5 h[25] (c, d) SEM images of Nd0.9Fe3CoSb12 samples prepared by traditional solid-state reaction (c) and MS method (d)[41] (e) SEM image of the free side of spun ribbon of La x Ti0.1Ga0.1Fe3CoSb12 sample[60] (f) thermoelectric figure of merit(ZT) values of La x Ti0.1Ga0.1Fe3CoSb12 sample prepared by MS and annealing sample (T—temperature)[60]
Fig.3  SEM image of Co0.95Fe0.05Sb3 thin film (a)[49], power factor (S2σ) of Co1 - x Fe x Sb3 (0 ≤ x ≤ 0.1) samples (b)[49], SEM image of CoSb3 + 0.72%Ti thin film (c)[42], schematic illustration of Ti doped CoSb3 thin film growth process ((1) nano Ti layer, (2) CoSb3 growing on the Ti layer, (3) annealed film) (d)[42], various phonon scattering mechanisms by nano-strcucture and Ti based points defect (e)[42], and temperature dependences of Seebeck coefficient (f)[42] and ZT values (g)[42] of the CoSb3 thin films with different Ti contents (Samples with Ti contents of 0, 0.25%, 0.57%, 0.72%, 0.83%, and 1.05% were labeled as S0, S1, S2, S3, S4, and S5, respectively)
Fig.4  FESEM image of CeFe4Sb11.9Te0.1 sample with nanopore structure (Arrows indicate nanopores in grains) (a)[34], ZT values of CeFe4Sb12 - x Te x skutterudite materials (b)[34], FESEM image of CeFe3.8Zn0.2Sb12 sample with nanofilm structure (c)[43], and ZT values of CeFe4 - x Zn x Sb12 samples (d)[43]
Fig.5  SEM image of CeFe3CoSb12 + 5%MoO2 (mole fraction) nanocomposite (a)[44], ZT values of CeFe3CoSb12 and (CeFe3CoSb12)1 - x (MoO2) x composite (b)[44], SEM image of the fracture surface for MmFe4Sb12 + 16%Mm2O3 (mass fraction) nanocomposite (Nano-composite 2) (c)[74], and ZT values of MmFe4Sb12 + 16%Mm2O3 nanocomposites and reference samples (Reference sample: hot pressed MmFe4Sb12 sample for 2 h (HP-2 h); Macro-composite: MmFe4Sb12 + 16%Mm2O3 composite (HP-2 h); Nano-composite 1: MmFe4Sb12 + 16%Mm2O3 nanocomposite by ball milling (BM) and HP-2 h; Nano-composite 2: MmFe4Sb12 + 16%Mm2O3 nanocomposite by BM, HP-4 h and annealing for 110 h) (d)[74]
Fig.6  SEM image of cross-sectional areas of CoSb3/0.2%G FeCl3 (mass fraction) sample (a)[77], power factorof CoSb3/x%G FeCl3 (mass fraction) samples (b)[77], SEM image of the fractured surfaces of CoSb3/3%MoS2 (mass fraction) nanocomposite (c)[45], and ZT values of CoSb3/xMoS2 nanocomposites (d)[45]
Fig.7  SEM image of La0.8Ti0.1Ga0.1Fe3CoSb12/0.1Fe3Si sample (a)[33], ZT values of La0.8Ti0.1Ga0.1Fe3CoSb12/xFe3Si nanocomposites (b)[33], SEM image of Nd0.6Fe2Co2Sb11.6Sn0.4 sample (c)[46], ZT values of Nd0.6Fe2Co2Sb12 - x Sn x nanocomposites (d)[46], FESEM image of CeFe4Sb12 + 0.2Ce sample (e)[82], TEM images of CeFe4Sb12 + 0.1Ce sample (f, g)[82], and ZT values of CeFe4Sb12 + yCe nanocomposites (TM—traditional method) (h)[82]
Fig.8  SEM images of the fracture surfaces showing crack propagation (a)[84], crack branching and fiber pullout (b)[84], crack deflection and fiber pullout (c)[84] of CeFe4Sb12/3%Cf (volume fraction) sample, SEM image of the polished surface of CeFe4Sb12/3%Cf sample (d)[84]; SEM images showing the fractured surface (e)[85], expanded crack (f)[85] for the Ce0.85Fe3CoSb12/1.4%rGO (reduced graphene oxide, volume fraction) sample; schematic diagram of toughing mechanism by rGO (F—force) (g)[85] and three-point flexural strength (σ) and fracture toughness (KIC) of the Ce0.85Fe3CoSb12/y%rGO (volume fraction) composites (h)[85]
1 Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321: 1457
doi: 10.1126/science.1158899 pmid: 18787160
2 Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090
3 Jing H M, Tong X, Zhu J L, et al. Microstructural analysis and thermoelectric properties of skutterudite CoSb3 materials produced by melt spinning and spark plasma sintering [J]. Ceram. Int., 2021, 47: 24916
doi: 10.1016/j.ceramint.2021.05.218
4 Zhu J L, Tong X, Niu S, et al. Effects of magnetization on thermoelectric transport properties of CoSb3 material [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2021, 36: 353
doi: 10.1007/s11595-021-2416-8
5 Fleurial J P, Caillat T, Borshchevsky A. Skutterudites: A new class of promising thermoelectric materials [C]. AIP Conf. Proc., 1994, 316: 40
6 Tong X, Liu Z Y, Zhu J L, et al. Research progress of p-type Fe-based skutterudite thermoelectric materials [J]. Front. Mater. Sci., 2021, 15: 317
doi: 10.1007/s11706-021-0563-7
7 Liu Z Y, Zhu W T, Nie X L, et al. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 12493
doi: 10.1007/s10854-019-01609-1
8 Rowe D M. CRC Handbook of Thermoelectrics [M]. Boca Raton: CRC Press, 1995: 407
9 Takabatake T, Suekuni K, Nakayama T, et al. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory [J]. Rev. Mod. Phys., 2014, 86: 669
doi: 10.1103/RevModPhys.86.669
10 Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports [J]. J. Am. Chem. Soc., 2011, 133: 7837
doi: 10.1021/ja111199y
11 Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in Ba xRy Co4Sb12 (R = La, Ce, and Sr) [J]. Appl. Phys. Lett., 2007, 90: 192111
doi: 10.1063/1.2737422
12 Shi X, Kong H, Li C P, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type Ba x Yb y Co4Sb12 double-filled skutterudites [J]. Appl. Phys. Lett., 2008, 92: 182101
doi: 10.1063/1.2920210
13 Rogl G, Grytsiv A, Rogl P, et al. n-type skutterudites (R, Ba, Yb) y -Co4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 [J]. Acta Mater., 2014, 63: 30
doi: 10.1016/j.actamat.2013.09.039
14 Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials [J]. Science, 1996, 272: 1325
pmid: 8662465
15 Zhou L N, Qiu P F, Uher C, et al. Thermoelectric properties of p-type Yb x La y Fe2.7Co1.3Sb12 double-filled skutterudites [J]. Intermetallics, 2013, 32: 209
doi: 10.1016/j.intermet.2012.08.005
16 Zhao W Y, Liu Z Y, Sun Z G, et al. Superparamagnetic enhancement of thermoelectric performance [J]. Nature, 2017, 549: 247
doi: 10.1038/nature23667
17 Liu Z Y, Zhu J L, Wei P, et al. Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension [J]. ACS Appl. Mater. Interfaces, 2019, 11: 45875
doi: 10.1021/acsami.9b16309
18 Zhao W Y, Liu Z Y, Wei P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials [J]. Nat. Nanotechnol., 2017, 12: 55
doi: 10.1038/nnano.2016.182
19 Li H, Su X L, Tang X F, et al. Grain boundary engineering with nano-scale InSb producing high performance In x Ce y Co4Sb12 + z skutterudite thermoelectrics [J]. J. Materiomics, 2017, 3: 273
doi: 10.1016/j.jmat.2017.07.003
20 Xiong Z, Chen X H, Huang X Y, et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy [J]. Acta Mater., 2010, 58: 3995
doi: 10.1016/j.actamat.2010.03.025
21 Zhu J L, Liu Z Y, Tong X, et al. Synergistic optimization of electrical-thermal-mechanical properties of the In-filled CoSb3 material by introducing Bi0.5Sb1.5Te3 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2021, 13: 23894
doi: 10.1021/acsami.1c03351
22 Ghosh S, Shankar G, Karati A, et al. Preferential phonon scattering and low energy carrier filtering by interfaces of in situ formed InSb nanoprecipitates and GaSb nanoinclusions for enhanced thermoelectric performance of In0.2Co4Sb12 [J]. Dalton Trans., 2020, 49: 15883
doi: 10.1039/D0DT03429K
23 Liu R H, Yang J, Chen X H, et al. p-type skutterudites RxMy -Fe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction [J]. Intermetallics, 2011, 19: 1747
doi: 10.1016/j.intermet.2011.06.010
24 Prado-Gonjal J, Vaqueiro P, Nuttall C, et al. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process [J]. J. Alloys Compd., 2017, 695: 3598
doi: 10.1016/j.jallcom.2016.11.404
25 Jie Q, Wang H Z, Liu W S, et al. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing [J]. Phys. Chem. Chem. Phys., 2013, 15: 6809
doi: 10.1039/c3cp50327e
26 Meng X F, Cai W, Liu Z H, et al. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition [J]. Acta Mater., 2015, 98: 405
doi: 10.1016/j.actamat.2015.07.027
27 Guo L J, Wang G W, Peng K L, et al. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics [J]. Scr. Mater., 2016, 116: 26
doi: 10.1016/j.scriptamat.2016.01.035
28 Tan G J, Liu W, Wang S Y, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance [J]. J. Mater. Chem., 2013, 1A: 12657
29 Li X G, Liu W D, Li S M, et al. Impurity removal leading to high-performance CoSb3-based skutterudites with synergistic carrier concentration optimization and thermal conductivity reduction [J]. ACS Appl. Mater. Interfaces, 2021, 13: 54185
doi: 10.1021/acsami.1c16622
30 Rogl G, Grytsiv A, Heinrich P, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12 - xXx (X = Ge, Sn) reaching ZT > 1.3 [J]. Acta Mater., 2015, 91: 227
doi: 10.1016/j.actamat.2015.03.008
31 Rogl G, Grytsiv A, Rogl P, et al. Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12 [J]. Acta Mater., 2013, 61: 6778
doi: 10.1016/j.actamat.2013.07.052
32 Tan G J, Chi H, Liu W, et al. Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions [J]. J. Mater. Chem., 2015, 3C: 8372
33 Peng S Y, Sun J H, Cui B, et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe3Si nanoprecipitate [J]. Inorg. Chem. Front., 2017, 4: 1697
doi: 10.1039/C7QI00304H
34 Fu L W, Yang J Y, Jiang Q H, et al. Thermoelectric performance enhancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores [J]. J. Electron. Mater., 2016, 45: 1240
doi: 10.1007/s11664-015-3973-4
35 Yu J, Zhao W Y, Zhou H Y, et al. Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials [J]. Scr. Mater., 2013, 68: 643
doi: 10.1016/j.scriptamat.2012.12.029
36 Liu Z Y, Zhu J L, Tong X, et al. A review of CoSb3-based skutterudite thermoelectric materials [J]. J. Adv. Ceram., 2020, 9: 647
doi: 10.1007/s40145-020-0407-4
37 Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials [J]. Adv. Mater., 2007, 19: 1043
doi: 10.1002/adma.200600527
38 Zhao W Y, Liang Z, Wei P, et al. Enhanced thermoelectric performance via randomly arranged nanopores: Excellent transport properties of YbZn2Sb2 nanoporous materials [J]. Acta Mater., 2012, 60: 1741
doi: 10.1016/j.actamat.2011.11.056
39 Rogl G, Rogl P. How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites [J]. Mater. Today Phys., 2017, 3: 48
40 Lu P X, Wu F, Han H L, et al. Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite [J]. J. Alloys Compd., 2010, 505: 255
doi: 10.1016/j.jallcom.2010.06.040
41 Guo L J, Zhang Y M, Zheng Y, et al. Super-rapid preparation of nanostructured Nd x Fe3CoSb12 compounds and their improved thermoelectric performance [J]. J. Electron. Mater., 2016, 45: 1271
doi: 10.1007/s11664-015-3997-9
42 Liang G X, Zheng Z H, Li F, et al. Nano structure Ti-doped skutterudite CoSb3 thin films through layer inter-diffusion for enhanced thermoelectric properties [J]. J. Eur. Ceram. Soc., 2019, 39: 4842
doi: 10.1016/j.jeurceramsoc.2019.06.044
43 Tan G J, Wang S Y, Li H, et al. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4 - x-Zn x Sb12 [J]. J. Solid State Chem., 2012, 187: 316
doi: 10.1016/j.jssc.2012.01.045
44 Katsuyama S, Okada H, Miyajima K. Thermoelectric properties of CeFe3CoSb12-MoO2 composite [J]. Mater. Trans., 2008, 49: 1731
doi: 10.2320/matertrans.E-MRA2008819
45 Yadav S, Chaudhary S, Pandya D K. Incorporation of MoS2 nanosheets in CoSb3 matrix as an efficient novel strategy to enhance its thermoelectric performance [J]. Appl. Surf. Sci., 2018, 435: 1265
doi: 10.1016/j.apsusc.2017.11.262
46 Duan F F, Zhang L, Dong J Y, et al. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites [J]. J. Alloys Compd., 2015, 639: 68
doi: 10.1016/j.jallcom.2015.03.074
47 Rao A M, Ji X H, Tritt T M. Properties of nanostructured one-dimensional and composite thermoelectric materials [J]. MRS Bull., 2006, 31: 218
doi: 10.1557/mrs2006.48
48 Hicks L, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor [J]. Phys. Rev., 1993, 47B: 16631
49 Yadav S, Chaudhary S, Pandya D K. Enhancing thermoelectric properties of p-type CoSb3 skutterudite by Fe doping [J]. Mater. Sci. Semicon. Process., 2021, 127: 105721.
doi: 10.1016/j.mssp.2021.105721
50 Li J Q, Feng X W, Sun W A, et al. Solvothermal synthesis of nano-sized skutterudite Co4 - x Fe x Sb12 powders [J]. Mater. Chem. Phys., 2008, 112: 57
doi: 10.1016/j.matchemphys.2008.05.017
51 Mi J L, Zhao X B, Zhu T J, et al. Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3 [J]. J. Alloys Compd., 2005, 399: 260
doi: 10.1016/j.jallcom.2005.03.013
52 Mi J L, Zhao X B, Zhu T J, et al. Solvothermal synthesis and electrical transport properties of skutterudite CoSb3 [J]. J. Alloys Compd., 2006, 417: 269
doi: 10.1016/j.jallcom.2005.09.033
53 Lan Y C, Minnich A J, Chen G, et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach [J]. Adv. Funct. Mater., 2010, 20: 357
doi: 10.1002/adfm.200901512
54 Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively [J]. Acta Mater., 2014, 76: 434
doi: 10.1016/j.actamat.2014.05.051
55 Bao S Q, Yang J Y, Zhu W, et al. Preparation and thermoelectric properties of La filled skutterudites by mechanical alloying and hot pressing [J]. Mater. Lett., 2006, 60: 2029
doi: 10.1016/j.matlet.2005.12.074
56 Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type Ce x Fe3CoSb12 skutterudite thermoelectric materials [J]. Intermetallics, 2019, 105: 44
doi: 10.1016/j.intermet.2018.11.010
57 Lee S, Lee K H, Kim Y M, et al. Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance [J]. Acta Mater., 2018, 142: 8
doi: 10.1016/j.actamat.2017.09.044
58 Lee K H, Bae S H, Choi S M. Phase formation behavior and thermoelectric transport properties of p-type Yb x Fe3CoSb12 prepared by melt spinning and spark plasma sintering [J]. Materials, 2020, 13: 87
doi: 10.3390/ma13010087
59 Shaheen N, Shen X C, Javed M S, et al. Super-fast preparation of Nd-filled p-type skutterudite compounds with enhanced thermoelectric properties [J]. Ceram. Int., 2017, 43: 7443
doi: 10.1016/j.ceramint.2017.03.011
60 Geng H Y, Zhang J L, He T H, et al. Microstructure evolution and mechanical properties of melt spun skutterudite-based thermoelectric materials [J]. Materials, 2020, 13: 984
doi: 10.3390/ma13040984
61 Thompson D R, Liu C, Yang J, et al. Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport [J]. Acta Mater., 2015, 92: 152
doi: 10.1016/j.actamat.2015.03.032
62 Hopkins P E, Rakich P T, Olsson R H, et al. Origin of reduction in phonon thermal conductivity of microporous solids [J]. Appl. Phys. Lett., 2009, 95: 161902
doi: 10.1063/1.3250166
63 Hsieh T Y, Lin H, Hsieh T J, et al. Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores [J]. J. Appl. Phys., 2012, 111: 124329
doi: 10.1063/1.4730962
64 Zhang L, Duan F F, Li X D, et al. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12 - x Ge x through spontaneous precipitates [J]. J. Appl. Phys., 2013, 114: 083715
65 He Q Y, Hu S J, Tang X G, et al. The great improvement effect of pores on ZT in Co1 - x Ni x Sb3 system [J]. Appl. Phys. Lett., 2008, 93: 042108
66 Faleev S V, Léonard F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J]. Phys. Rev., 2008, 77B: 214304
67 Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials [J]. NPG Asia Mater., 2010, 2: 152
doi: 10.1038/asiamat.2010.138
68 Yamini S A, Wang H, Ginting D, et al. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 11476
doi: 10.1021/am502140h
69 Sootsman J, Kong H J, Uher C, et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring [J]. Angew. Chem. Int. Ed., 2008, 47: 8618
doi: 10.1002/anie.200803934 pmid: 18846585
70 Heremans J P, Wiendlocha B, Chamoire A M. Resonant levels in bulk thermoelectric semiconductors [J]. Energy Environ. Sci., 2012, 5: 5510
doi: 10.1039/C1EE02612G
71 Yang J H, Yip H L, Jen A K Y. Rational design of advanced thermoelectric materials [J]. Adv. Energy Mater., 2013, 3, 549
doi: 10.1002/aenm.201200514
72 Li J H, Tan Q, Li J F, et al. BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties [J]. Adv. Funct. Mater., 2013, 23: 4317
doi: 10.1002/adfm.201300146
73 Katsuyama S, Okada H. Synthesis of rare earth filled skutterudite composite with dispersed oxide particles by mechanical milling and SPS techniques and investigation of its thermoelectric properties [J]. J. Jpn. Soc. Powder. Powder. Metall., 2007, 54: 375
doi: 10.2497/jjspm.54.375
74 Zhang L, Grytsiv A, Kerber M, et al. MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: Kinetics of formation and transport properties [J]. J. Alloys Compd., 2009, 481: 106
doi: 10.1016/j.jallcom.2009.03.109
75 Zhou H Y, Zhao W Y, Zhu W T, et al. Preparation and enhanced thermoelectric properties of p-type BaFe12O19/CeFe3CoSb12 magnetic nanocomposite materials [J]. J. Electron. Mater., 2014, 43: 1498
doi: 10.1007/s11664-013-2746-1
76 Schmitz A, Schmid C, de Boor J, et al. Dispersion of multi-walled carbon nanotubes in skutterudites and its effect on thermoelectric and mechanical properties [J]. J. Nanosci. Nanotechnol., 2017, 17: 1547
doi: 10.1166/jnn.2017.13727
77 Zong P A, Mao Z D, Ou Y X, et al. Enhanced thermoelectric properties of binary CoSb3 by embedding FeCl3-intercalated graphene nanosheets [J]. J. Eur. Ceram. Soc., 2021, 41: 6523
doi: 10.1016/j.jeurceramsoc.2021.06.016
78 Zhou C, Sakamoto J, Morelli D. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions [J]. J. Electron. Mater., 2011, 40: 547
doi: 10.1007/s11664-010-1444-5
79 Zhou C, Sakamoto J, Morelli D. High-temperature thermoelectric properties of p-type Yb-filled skutterudite nanocomposites with FeSb2 nanoinclusions [J]. J. Electron. Mater., 2012, 41: 1030
doi: 10.1007/s11664-011-1831-6
80 Guo L J, Cai Z W, Xu X L, et al. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring [J]. J. Nanosci. Nanotechnol., 2016, 16: 3841
doi: 10.1166/jnn.2016.11900
81 Benyahia M, Vaney J B, Leroy E, et al. Thermoelectric properties in double-filled Ce0.3In y Fe1.5Co2.5Sb12 p-type skutterudites [J]. J. Alloys Compd., 2017, 696: 1031
doi: 10.1016/j.jallcom.2016.12.040
82 Tan G J, Zheng Y, Tang X F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures [J]. Appl. Phys. Lett., 2013, 103: 183904
doi: 10.1063/1.4827555
83 Ravi V, Firdosy S, Caillat T, et al. Mechanical properties of thermoelectric skutterudites [C]. AIP Conf. Proc., 2008, 969: 656
84 Wan S, Huang X Y, Qiu P F, et al. The effect of short carbon fibers on the thermoelectric and mechanical properties of p-type CeFe4Sb12 skutterudite composites [J]. Mater. Des., 2015, 67: 379
doi: 10.1016/j.matdes.2014.11.050
85 Zong P A, Chen L D. Preparation and mechanical properties of Ce0.85Fe3CoSb12/rGO thermoelectric nanocomposite [J]. J. Inorg. Mater., 2017, 32: 33
doi: 10.15541/jim20160220
宗鹏安, 陈立东. Ce 0.85Fe3CoSb12/rGO热电纳米复合材料的制备及其力学性能 [J]. 无机材料学报, 2017, 32: 33
86 Rogl G, Grytsiv A, Failamani F, et al. Attempts to further enhance ZT in skutterudites via nano-composites [J]. J. Alloys Compd., 2017, 695: 682
doi: 10.1016/j.jallcom.2016.10.114
87 Wen P F, Mei H, Zhai P C, et al. Effects of nano-α-Al2O3 dispersion on the thermoelectric and mechanical properties of CoSb3 composites [J]. J. Mater. Eng. Perform., 2013, 22: 3561
doi: 10.1007/s11665-013-0641-9
88 Fan Y C, Igarashi G, Jiang W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene [J]. Carbon, 2015, 90: 274
doi: 10.1016/j.carbon.2015.04.029
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!