Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (6): 816-826    DOI: 10.11900/0412.1961.2021.00002
Research paper Current Issue | Archive | Adv Search |
Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials
HE Xingqun1,2,3, FU Huadong1,2,3(), ZHANG Hongtao1,2,3, FANG Jiheng4, XIE Ming4, XIE Jianxin1,2,3()
1.Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
3.Key Laboratory for Advanced Materials Processing (Ministry of Education), University of Science and Technology Beijing, Beijing 100083, China
4.State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
Cite this article: 

HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials. Acta Metall Sin, 2022, 58(6): 816-826.

Download:  HTML  PDF(3397KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thirty-two groups of data of composition and performance of silver alloy electrical contact materials prepared via casting were collected from the literature to quickly find high-performance silver alloy electrical contact materials. The key alloy factors affecting the alloy properties were identified using the feature selection method. The prediction model of alloy electrical conductivity and hardness was established using a support vector machine (SVM) algorithm, which achieved the rapid design of alloy composition. Three composition designs of Ag-19.53Cu-1.36Ni, Ag-10.20Cu-0.20Ni-0.05Ce, and Ag-11.43Cu-0.66Ni-0.05Ce (mass fraction, %) with excellent predictive performance were selected for experimental validation under industrial production conditions. The error between the performance prediction and experimental results is less than 10%, the electrical conductivity of the three alloys designed is greater than 79%IACS, and the Vickers hardness is greater than 87 HV. Both the electrical conductivity and hardness are better than those of previous silver alloy electrical contact materials prepared via casting. The above results show that the machine learning composition design method established in this study has good reliability, helps improve the efficiency of alloy composition design, and quickly finds silver alloy electrical contact materials with excellent comprehensive properties.

Key words:  machine learning      silver alloy      electrical contact material      composition design     
Received:  15 January 2021     
ZTFLH:  TG146.3  
Fund: National Natural Science Foundation of China(U1602271);National Natural Science Foundation of China(51974028);Project of Beijing Municipal Science & Technology Commission(Z191100001119125);Fundamental Research Funds for the Central Universities(FRF-IDRY-19-019)
About author:  FU Huadong, professor, Tel: (010)62333999, E-mail: hdfu@ustb.edu.cnXIE Jianxin, professor, Tel: (010)62332254, E-mail: jxxie@mater.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00002     OR     https://www.ams.org.cn/EN/Y2022/V58/I6/816

Fig.1  Strategy of silver alloy composition design aided by machine-learning (ML) (g is the performance to be predicted and f(x) is its corresponding model in step III. EC and HV in step IV represent the electrical conductivity and Vickers hardness of the alloys, respectively)
RangeMass fraction of element / %Property
AgCuNiAuPdCePtCdECH
%IACS
HV
Min.50.00.00.00.00.00.00.00.05.624.0
Max.97.050.02.060.050.00.480.020.095.898.0
Table 1  Distribution range of sample dataset
Fig.2  Linear correlation performances of alloy factors for EC model (a) and hardness model (b) of silver alloy electrical contact material after linear correlation screening (The color bars in Figs.2a and b indicate the magnitude of the correlation coefficient values between the two features of electrical conductivity and hardness, respectively)
Fig.3  Results of backward recursive screening of alloy factors for EC model (a) and hardness model (b) of silver alloy electrical contact materials (MAPE—mean absolute percentage error)
Fig.4  Results of exhaustive screening of key alloy factors for EC model (a) and hardness model (b) of silver alloy electrical contact material
Alloy factor numberAlloy factor name
18Average of third ionization energy
45Average of group number
79Variance of mass attenuation coefficient for CuKα
90Variance of chemical potential
Table 2  Searching results of key alloy factor characteristics for EC model
Alloy factor numberAlloy factor name
89Variance of electron affinity energy
97Valence of electron variance s orbital
129Valence of distance valence electron
131Valence of volume atom
139Valence of valence electron number (VEC, including s, p, d, and f orbits)
Table 3  Searching results of key alloy factor characteristics for hardness model
Fig.5  Machine learning prediction model results based on support vector machine for EC model (a) and hardness model (b) (RMSE—root mean square error, R—correlation coefficient)
AlloyCompositionCuNiCeAg
1Nominal20.281.39-Bal.
Actual19.531.36-Bal.
2Nominal11.210.500.20Bal.
Actual11.430.660.050Bal.
3Nominal10.350.190.20Bal.
Actual10.200.200.056Bal.
Table 4  Nominal compositions and actual compositions of the designed alloy
AlloyEC / %IACSErrorHardness / HVError
PredictedMeasured%PredictedMeasured%
171.9079.14 ± 0.409.1596.2697.87 ± 2.541.65
278.8284.50 ± 0.366.7283.4687.04 ± 2.264.11
387.9686.11 ± 0.532.1575.1681.49 ± 1.717.77
Table 5  Comparisons of predicted and measured properties of the designed alloys
Fig.6  EC (a) and hardness (b) changes during processing and heat treatment of the designed alloys (CA—as cast, HG—after homogenization, DH—drawing to diameter 2 mm at hard state, AN—after drawing to diameter 2 mm and annealing)
Fig.7  Tensile strength and elongation of the designed alloy after drawing to diameter 2 mm and annealing (a) and comparisons of properties between designed alloy and the alloys reported in literatures [21,22,38-40] (b)
Fig.8  SEM images of designed silver alloy electrical contact materials
(a-c) as-cast microstructures of alloys 1, 2, and 3, respectively (Insets show the magnified images) (d-f) cross section microstructures of alloys 1, 2, and 3 after drawing to diameter 2 mm and annealing, respectively (g-i) longitudinal section microstructures of alloys 1, 2, and 3 after drawing to diameter 2 mm and annealing, respectively
Fig.9  TEM images of the designed alloys consisting of α-Ag phase and β-Cu(Ag, Ni) phase after annealing at 550oC
(a) alloy 1 (b) alloy 2 (c) alloy3
PointCompositionAgCuNi
1Mass fraction / %4.6091.403.99
Atomic fraction / %2.7692.854.39
2Mass fraction / %4.8490.804.36
Atomic fraction / %2.9092.314.80
3Mass fraction / %5.8593.061.10
Atomic fraction / %3.5395.261.21
Table 6  EDS results of points 1-3 marked in Fig.9
1 Findik F, Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials [J]. Mater. Des., 2003, 24: 489
doi: 10.1016/S0261-3069(03)00125-0
2 Biyik S, Arslan F, Aydin M. Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying [J]. J. Electron. Mater., 2015, 44: 457
doi: 10.1007/s11664-014-3399-4
3 Jung H, Nestler D, Wielage B, et al. Reinforcement of conducting silver-based materials [J]. Mater. Sci., 2014, 20: 247
4 Li H Y, Wang X H, Liu Y F, et al. Effect of strengthening phase on material transfer behavior of Ag-based contact materials under different voltages [J]. Vacuum, 2017, 135: 55
doi: 10.1016/j.vacuum.2016.10.031
5 Wang J, Tie S N, Kang Y Q, et al. Contact resistance characteristics of Ag-SnO2 contact materials with high SnO2 content [J]. J. Alloys Compd., 2015, 644: 438
doi: 10.1016/j.jallcom.2015.05.035
6 Ray N, Kempf B, Wiehl G, et al. Novel processing of Ag-WC electrical contact materials using spark plasma sintering [J]. Mater. Des., 2017, 121: 262
doi: 10.1016/j.matdes.2017.02.070
7 Xue D Z, Xue D Q, Yuan R H, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys [J]. Acta Mater., 2017, 125: 532
doi: 10.1016/j.actamat.2016.12.009
8 Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
doi: 10.1126/sciadv.aaq1566
9 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
10 Ling J, Hutchinson M, Antono E, et al. High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates [J]. Integr. Mater. Manuf. Innov., 2017, 6: 207
doi: 10.1007/s40192-017-0098-z
11 Liu R Q, Kumar A, Chen Z Z, et al. A predictive machine learning approach for microstructure optimization and materials design [J]. Sci. Rep., 2015, 5: 11551
doi: 10.1038/srep11551
12 Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability [J]. J. Phys. Chem. Lett., 2017, 8: 3434
doi: 10.1021/acs.jpclett.7b01046 pmid: 28697303
13 Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
14 Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening [J]. Acta Mater., 2020, 200: 803
doi: 10.1016/j.actamat.2020.09.068
15 Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
doi: 10.1038/ncomms11241
16 Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Mater., 2019, 170: 109
doi: 10.1016/j.actamat.2019.03.010
17 Sun Y, Zeng W D, Han Y F, et al. Optimization of chemical composition for TC11 titanium alloy based on artificial neural network and genetic algorithm [J]. Comput. Mater. Sci., 2011, 50: 1064
doi: 10.1016/j.commatsci.2010.11.002
18 GroupWriting. Precious Metal Processing Manual [M]. Beijing: Metallurgical Industry Press, 1978: 1
《贵金属加工手册》编写组. 贵金属加工手册 [M]. 北京: 冶金工业出版社, 1978: 1
19 Ning Y T, Zhao H Z. Silver [M]. Changsha: Central South University Press, 2005: 1
宁远涛, 赵怀志. 银 [M]. 长沙: 中南大学出版社, 2005: 1
20 Hu C Y, Liu S J. New Materials of Precious Metals [M]. Changsha: Central South University Press, 2015: 1
胡昌义, 刘时杰. 贵金属新材料 [M]. 长沙: 中南大学出版社, 2015: 1
21 Wei M X, Liu Q, Gao Q Q, et al. Study the influence of rare earth elements on microstructure and property of AgCuNi alloy [J]. Precious Met., 2019, 40(suppl.1) : 31
魏明霞, 柳 青, 高勤琴 等. 稀土元素对AgCuNi合金材料组织性能影响研究 [J]. 贵金属, 2019, 40(): 31
22 Dong P, Ren T, Qin G Y, et al. Microstructure and properties of Ag-15Cu-10Au-2Ni alloy [J]. J. Funct. Mater., 2019, 50: 3174
董 鹏, 任 涛, 秦国义 等. Ag-15Cu-10Au-2Ni合金的显微组织与性能 [J]. 功能材料, 2019, 50: 3174
23 Chen Y T, Wang S, Xie M, et al. Research progress in silver based sliding electrical contact material [J]. Precious Met., 2015, 36(1): 68
陈永泰, 王 松, 谢 明 等. 银基滑动电接触材料的研究进展 [J]. 贵金属, 2015, 36(1): 68
24 Li S Z, Zhang H R, Dai D B, et al. Study on the factors affecting solid solubility in binary alloys: An exploration by machine learning [J]. J. Alloys Compd., 2019, 782: 110
doi: 10.1016/j.jallcom.2018.12.136
25 Wojtasik K, Missol W. PM helps develop cadmium-free electrical contacts [J]. Met. Powd. Rep., 2004, 59: 34.
26 Huang F X, Li M, Ying P, et al. Effect of trace cerium on the as-cast microstructure of Ag-Cu-Ni alloy [J]. Mater. Sci. Forum, 2011, 687: 44
doi: 10.4028/www.scientific.net/MSF.687.44
27 Ferro R, Delfino S. Comments on the properties of Ag-rich alloys in the silver-rare earth systems [J]. J. Less Common Met., 1979, 68: 23
doi: 10.1016/0022-5088(79)90269-8
28 Hsueh H W, Hung F Y, Lui T S. Recrystallization of Ag and Ag-La alloy wire in wire bonding process [J]. Adv. Mater. Res., 2013, 804: 151
29 Louw N, Steel S J. Variable selection in kernel fisher discriminant analysis by means of recursive feature elimination [J]. Comput. Stat. Data An., 2006, 51: 2043
doi: 10.1016/j.csda.2005.12.018
30 Nagata K, Kitazono J, Nakajima S, et al. An exhaustive search and stability of sparse estimation for feature selection problem [J]. IPSJ Online Trans., 2015, 8: 25
31 Luo H T, Chen S W. Phase equilibria of the ternary Ag-Cu-Ni system and the interfacial reactions in the Ag-Cu/Ni couples [J]. J. Mater. Sci., 1996, 31: 5059
doi: 10.1007/BF00355906
32 Wloch G, Sokolowski K, Ostachowski P, et al. Decomposition of supersaturated solid solution during non-isothermal aging and its effect on the physical properties and microstructure of the Ag-Cu7.5 Alloy [J]. J. Mater. Eng. Perform., 2020, 29: 1488
doi: 10.1007/s11665-019-04517-x
33 Ghosh G, Miyake J, Fine M E, et al. The systems-based design of high-strength, high-conductivity alloys [J]. JOM, 1997, 49(3): 56
34 Zhan C G, Nichols J A, Dixon D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies [J]. J. Phys. Chem., 2003, 107A: 4184
35 Li M, Lu P, Zhang H Q, et al. Electrochemical determination of the ionization potential and electron affinity of PF derivatives [J]. Chin. J. Lumin., 2006, 27: 80
李 茂, 路 萍, 张海全 等. 含芴聚合物电子亲合能和电离能的确定 [J]. 发光学报, 2006, 27: 80
36 Demir D, Turşucu A, Önülüer T. Studies on mass attenuation coefficient, effective atomic number and electron density of some vitamins [J]. Radiat. Environ. Biophys., 2012, 51: 469
doi: 10.1007/s00411-012-0427-8 pmid: 22733080
37 Owen P E A, Roberts E W. XXIX. Factors affecting the limit of solubility of elements in copper and silver [J]. Lond. Edinb. Dubl. Phil. Mag. J. Sci., 1939, 27: 294
38 Li J, Yang F T, Zhou S P, et al. Influence of trace amounts of cerium on properties of AgCuNi alloy [J]. Chin. J. Rare Met., 2007(suppl. 1) : 1
李 季, 杨富陶, 周世平 等. 微量稀土元素铈对AgCuNi合金的性能影响 [J]. 稀有金属, 2007(): 1
39 Lu S P, Yang H M, Yang F T, et al. The effect of Zn on the properties of AgCuNi4-0.5 alloy [J]. Precious Met., 2013, 34(1): 21
卢绍平, 杨红梅, 杨富陶 等. Zn对AgCuNi4-0.5合金性能的影响 [J]. 贵金属, 2013, 34(1): 21
40 He X Y, Zhou S P, Wang J, et al. Effect of Cu on mechanical properties and recrystallization temperature of AgCe alloy [J]. Precious Met., 2008, 29(2): 11
贺晓燕, 周世平, 王 健 等. Cu对AgCe合金机械性能及再结晶温度的影响 [J]. 贵金属, 2008, 29(2): 11
41 Hou J T, Hao Q L, Zhang L, et al. Study on the evolution of microstructure and properties during recrystallization of Ag-Cu alloy [J]. Precious Met., 2019, 40(suppl.1) : 40
侯江涛, 郝庆乐, 张 雷 等. 银铜合金再结晶过程组织性能演变研究 [J]. 贵金属, 2019, 40(): 40
42 Dong P. Effects of Au(In、Sn) on microstructure and properties of Ag-20Cu-2Ni alloy [D]. Kunming: Yunnan University, 2019
董 鹏. Au(In、Sn)对Ag-20Cu-2Ni合金显微组织与性能的影响 [D]. 昆明: 云南大学, 2019
43 Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[3] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[4] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[6] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[7] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[8] XIE Jianxin, SU Yanjing, XUE Dezhen, JIANG Xue, FU Huadong, HUANG Haiyou. Machine Learning for Materials Research and Development[J]. 金属学报, 2021, 57(11): 1343-1361.
[9] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[10] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[11] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[12] Jianxiang DING,Wubian TIAN,Dandan WANG,Peigen ZHANG,Jian CHEN,Zhengming SUN. Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite[J]. 金属学报, 2019, 55(5): 627-637.
[13] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[14] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[15] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
No Suggested Reading articles found!