|
|
Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing |
ZHANG Limin1( ), LI Ning2, ZHU Longfei1, YIN Pengfei3, WANG Jianyuan1, WU Hongjing1 |
1MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China 2School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 3College of Science, Sichuan Agricultural University, Ya'an 625014, China |
|
Cite this article:
ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing. Acta Metall Sin, 2023, 59(12): 1624-1632.
|
Abstract Controlling the macrosegregation induced by electropulsing is of high commercial importance. This study investigates the macrosegregation of the primary Si phase in casting Al-Si hypereutectic alloys via the different solidification stages and components of alloys treated with electropulsing. Experimental results show that a serious gradient macrosegregation of the primary Si phase occurs, and four types of primary Si regions are formed: coarse plate-like, refined plate-like, and fine polygon primary Si, as well as a eutectic structure. The wider the solidification temperature range, the more serious the macrosegregation. A near-eutectic structure occurs at the center of ingots when the solidification temperature range exceeds a certain threshold. With an increasing current density of electropulsing, the segregation degree of primary Si increases initially and then decreases for different Al-Si hypereutectic alloys, but the current density with regard to the most serious segregation is closely related to the Si content. Furthermore, it is proved that the migration behavior of primary Si particles plays an important role in macrosegregation. A special casting experiment under the condition of limited heat flux along the radial direction was performed to clarify the macrosegregation mechanism of primary Si under electropulsing. After nucleation during the solidification process, the primary Si particles move to the front of the solid-liquid interface due to secondary flow in bulk liquid and then are easily captured due to the electromagnetic repulsive force or its component. The force flow in the bulk liquid and mush zone and the secondary flow in front of the solid-liquid interface make obvious solute redistribution and promote the growth of the primary Si phase, which is maintained until the solute concentration in the bulk liquid approaches the eutectic composition.
|
Received: 08 November 2021
|
|
Fund: National Natural Science Foundation of China(52074227);National Natural Science Foundation of China(51801186);National Natural Science Foundation of China(52130405);Key Re-search and Development Program of Shaanxi Province(2020ZDLGY13-03) |
1 |
Wu Y, Wang S J, Li H, et al. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy[J]. J. Alloys Compd., 2009, 477: 139
doi: 10.1016/j.jallcom.2008.10.015
|
2 |
Feng H K, Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy[J]. J. Mater. Process. Technol., 2008, 208: 330
doi: 10.1016/j.jmatprotec.2007.12.121
|
3 |
Zhang Y H, Ye C Y, Xu Y Y, et al. Influence of growth velocity on the separation of primary silicon in solidified Al-Si hypereutectic alloy driven by a pulsed electric current[J]. Metals, 2017, 7: 184
doi: 10.3390/met7060184
|
4 |
Hernández F C R, Sokolowski J H. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys[J]. J. Alloys Compd., 2006, 426: 205
doi: 10.1016/j.jallcom.2006.09.039
|
5 |
Räbiger D, Zhang Y H, Galindo V, et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
|
6 |
Li N, Zhang R, Zhang L M, et al. Study on grain refinement mechanism of hypoeutectic Al-7%Si alloy under low voltage alternating current pulse[J]. Acta Metall. Sin., 2017, 53: 192
|
|
李 宁, 张 蓉, 张利民 等. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53: 192
|
7 |
Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse[J]. J. Mater. Res., 2016, 31: 396
doi: 10.1557/jmr.2016.17
|
8 |
Wang T M, Zhu J, Kang H J, et al. In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn-Bi hypoeutectic alloy under electric currents[J]. Appl. Phys., 2014, 117A: 1059
|
9 |
Zhang X F, Qin R S. Electric current-driven migration of electrically neutral particles in liquids[J]. Appl. Phys. Lett., 2014, 104: 114106
doi: 10.1063/1.4869465
|
10 |
Zhang Y H, Xu Y Y, Ye C Y, et al. Relevance of electrical current distribution to the forced flow and grain refinement in solidified Al-Si hypoeutectic alloy[J]. Sci. Rep., 2018, 8: 3242
doi: 10.1038/s41598-018-21709-y
pmid: 29459751
|
11 |
Chen Z X, Ding H S, Chen R R, et al. Microstructural evolution and mechanism of solidified TiAl alloy applied electric current pulse[J]. Acta Metall. Sin., 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
|
|
陈占兴, 丁宏升, 陈瑞润 等. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
|
12 |
Zhang Y H, Song C J, Zhu L, et al. Influence of electric-current pulse treatment on the formation of regular eutectic morphology in an Al-Si eutectic alloy[J]. Metall. Mater. Trans., 2011, 42B: 604
|
13 |
Li F, Regel L L, Wilcox W R. The influence of electric current pulses on the microstructure of the MnBi/Bi eutectic[J]. J. Cryst. Growth, 2001, 223: 251
doi: 10.1016/S0022-0248(00)00991-X
|
14 |
Flemings M C, Mehrabian R, Nereo G E. Macrosegregation: Part II[J]. Trans. Met. Soc. AIME, 1968, 242: 41
|
15 |
Beckermann C. Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243
doi: 10.1179/095066002225006557
|
16 |
Jie J C, Zou Q C, Sun J L, et al. Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Mater., 2014, 72: 57
doi: 10.1016/j.actamat.2014.03.031
|
17 |
Zimmermann G, Weiss A, Mbaya Z. Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification[J]. Mater. Sci. Eng., 2005, A413-414: 236
|
18 |
Noeppel A, Ciobanas A, Wang X D, et al. Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys[J]. Metall. Mater. Trans., 2010, 41B: 193
|
19 |
Zhang Y H, Miao X C, Shen Z Y, et al. Macro segregation formation mechanism of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents[J]. Acta Mater., 2015, 97: 357
doi: 10.1016/j.actamat.2015.07.002
|
20 |
Li J Y, Ni P, Wang L, et al. Influence of direct electric current on solidification process of Al-Si alloy[J]. Mater. Sci. Semicond. Process., 2017, 61: 79
doi: 10.1016/j.mssp.2016.12.034
|
21 |
Ban C Y, Han Y, Ba Q X, et al. Influence of pulse electric current on solidification structures of Al-Si alloys[J]. Mater. Sci. Forum, 2007, 546-549: 723
doi: 10.4028/www.scientific.net/MSF.546-549
|
22 |
Zhang B W, Ren Z M, Zhong Y B, et al. Theoretical analysis on electromagnetic separation of inclusions from molten metal only by current[J]. J. Baotou Univ. Iron Steel Technol., 2002, 21: 228
|
|
张邦文, 任忠鸣, 钟云波 等. 金属液单电流电磁净化的理论分析[J]. 包头钢铁学院学报, 2002, 21: 228
|
23 |
Du C M. The effect of current on inclusion and bubble in molten steel[D]. Shenyang: Northeastern University, 2013
|
|
杜传明. 电流对钢液中气泡和夹杂物的影响[D]. 沈阳: 东北大学, 2013
|
24 |
Qin R S, Bhowmik A. Computational thermodynamics in electric current metallurgy[J]. Mater. Sci. Technol., 2015, 31: 1560
doi: 10.1179/1743284714Y.0000000746
|
25 |
Wang X L, Guo J D, Wang Y M, et al. Segregation of lead in Cu-Zn alloy under electric current pulses[J]. Appl. Phys. Lett., 2006, 89: 061910
|
26 |
Zhang X F, Lu W J, Qin R S. Removal of MnS inclusions in molten steel using electropulsing[J]. Scr. Mater., 2013, 69: 453
doi: 10.1016/j.scriptamat.2013.05.033
|
27 |
Zhang L M, Zhang R, Li N, et al. Evolution of solidification structure of hypereutectic Al-Si alloy under a novel low-voltage alternating current pulse[J]. J. Iron Steel Res. Int., 2012, 19(suppl.): 355
|
28 |
Zhang L M, Zhang R, Chen W J, et al. Effect of a novel low-voltage alternating current pulse on solidification structure of Al-7Si-0.52Mg alloy[J]. Adv. Mater. Res., 2012, 482-484: 1431
|
29 |
Murray J L, McAlister A J. Massalski T B. Binary Alloy Phase Diagrams, Vol. I[M]. 2nd Ed., ASM International, 1996: 211
|
30 |
Mao W M, Li S S, Zhao A M, et al. Effect of electromagnetic stirring on the distribution of primary silicon in hypereutectic Al-Si alloys[J]. Acta Metall. Sin., 2001, 37: 781
|
|
毛卫民, 李树索, 赵爱民 等. 电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J]. 金属学报, 2001, 37: 781
|
31 |
Taniguchi S, Brimacombe J K. Application of pinch force to the separation of inclusion particles from liquid steel[J]. ISIJ Int., 1994, 34: 722
doi: 10.2355/isijinternational.34.722
|
32 |
Zhang X F, Yan L G. Regulating the non-metallic inclusions by pulsed electric current in molten metal[J]. Acta Metall. Sin., 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
|
|
张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
|
33 |
Nikrityuk P A, Eckert K, Grundmann R, et al. An impact of a low voltage steady electrical current on the solidification of a binary metal alloy: A numerical study[J]. Steel Res. Int., 2007, 78: 402
doi: 10.1002/srin.2007.78.issue-5
|
34 |
Bojarevičs V, Shcherbinin E V. Azimuthal rotation in the axisymmetric meridional flow due to an electric-current source[J]. J. Fluid Mech., 1983, 126: 413
doi: 10.1017/S0022112083000245
|
35 |
Schmitz J, Hallstedt B, Brillo J, et al. Density and thermal expansion of liquid Al-Si alloys[J]. J. Mater. Sci., 2012, 47: 3706
doi: 10.1007/s10853-011-6219-8
|
36 |
Yu W Z, Ma W H, Zheng Z, et al. Effects of melt viscosity on enrichment and separation of primary silicon from Al-Si melt[J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 467
doi: 10.1016/S1003-6326(17)60053-0
|
37 |
Yin M Z. Effect of centrifugal casting on microstructures and properties of hypereutectic Al-20wt.%Si alloy[D]. Changchun: Jilin University, 2014
|
|
尹茂振. 离心铸造对过共晶Al-20wt.%Si合金组织及性能的影响[D]. 长春: 吉林大学, 2014
|
38 |
Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
doi: 10.1016/j.actamat.2007.02.031
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|