|
|
Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current |
ZHANG Xinfang1( ), XIANG Siqi1, YI Kun1, GUO Jingdong2( ) |
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current. Acta Metall Sin, 2022, 58(5): 581-598.
|
Abstract The generation of residual stress is unavoidable during the preparation and processing of metallic materials. This residual stress reduces the stability of material preparation and processing, particularly the surface tensile stress, which will reduce the fatigue and corrosion resistances of the material. Therefore, the effective regulation of the residual stress is generally required. However, traditional residual stress control methods, such as heat treatment, exhibits low efficiency because they are limited by material size and type. It is crucial to develop a new method for regulating residual stress that is green, low energy consumption, stable, effective, and applicable to various metallic materials. Pulsed electric current processing is a new material processing technology. It has been widely used in the elimination and control of residual stress in materials in the recent years. Herein, the generation, disadvantages, and traditional control methods of residual stress are briefly reviewed; the characteristics of residual stress under various pulsed electric current treatment modes are reviewed in detail; and the mechanism of residual stress under pulsed electric current is briefly discussed. Based on the obtained results, under the action of high energy pulsed electric current, the residual stress inside and on the surface of the metallic materials can be effectively eliminated in a very short period (approximately 1 s) and the maximum elimination rate can reach 100%. The higher the current density, the higher is the rate of residual stress elimination. Furthermore, the greater the initial residual stress in the material, it is simpler to eliminate residual stress. The experimental results of low energy continuous pulsed electric current treatment show that there are numerous types of response modes, such as increasing, decreasing, and unchanged residual stress, which are associated with the type of material and the pulse parameters. To control the residual stress in the material, the treatment method for coupling pulsed electric current and external stress is effective. Coupling low energy continuous pulsed electric current during material processing can effectively introduce residual compressive stress on the surface of the material and improve the fatigue and corrosion resistances of the material. The electrodynamic treatment technology, which produces hammering when the material is subjected to pulsed electric current, can transform the tensile stress on the material surface into compressive stress to improve the performance of the material. This effectively breaks through the high energy requirement of eliminating residual stress and allowing the workpiece directly in the setting regional area. Residual stress in pulsed electric current processing is removed via the following mechanism: Joule heating and pulsed electric current effects caused by pulsed electric current promote dislocation movement and reduce the flow stress of the material; therefore, the material can undergo plastic deformation at a low stress level, for which the pulsed electric current effect is crucial. The combined action of stress changes caused by pulsed electric current (thermal stress, pinch effect, magnetostrictive effect, and instantaneous thermal expansion stress), external stress (deformation and impact), and residual stress constitute the driving force to promote plastic deformation.
|
Received: 30 August 2021
|
|
Fund: National Natural Science Foundation of China(U21B2082);National Natural Science Foundation of China(51874023);National Natural Science Foundation of China(U1860206);National Key Research and Development Program of China(2019YFC1908403);Fundamental Research Funds for the Central Universities(FRF-TP-20-04B) |
About author: ZHANG Xinfang, professor, Tel: (010)62332265, E-mail: xfzhang@ustb.edu.cnGUO Jingdong, professor, Tel: (024)23971491, E-mail: jdguo@imr.ac.cn
|
1 |
Mi G M, translated by Zhu J P, Shao H M. Generation and Countermeasures of Residual Stress [M]. Beijing: China Machine Press, 1983: 1
|
|
(米谷茂著. 朱荆璞, 邵会孟译. 残余应力的产生和对策 [M]. 北京: 机械工业出版社, 1983: 1)
|
2 |
Withers P J. Residual stress and its role in failure [J]. Rep. Prog. Phys., 2007, 70: 2211
doi: 10.1088/0034-4885/70/12/R04
|
3 |
Zheng J Y. Research on the theory and key technology of residual stress relief based on Electropulsing method [D]. Hangzhou: Zhejiang University, 2011
|
|
郑建毅. 电脉冲法消除残余应力的理论及关键技术研究 [D]. 杭州: 浙江大学, 2011
|
4 |
Seeger A, Donth H, Kochendörfer A. Theorie der Versetzungen in eindimensionalen Atomreihen [J]. Zeitsch. für Physik, 1953, 134: 173
|
5 |
Zhang Z, Li L, Yang Y, et al. Machining distortion minimization for the manufacturing of aeronautical structure [J]. Int. J. Adv. Manuf. Technol., 2014, 73: 1765
|
6 |
Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
|
7 |
Xin H H, Correia J A F O, Veljkovic M, et al. Residual stress effects on fatigue life prediction using hardness measurements for butt-welded joints made of high strength steels [J]. Int. J. Fatigue, 2021, 147: 106175
doi: 10.1016/j.ijfatigue.2021.106175
|
8 |
Peng Y W, Chen C M, Li X Y, et al. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2017, 328: 420
doi: 10.1016/j.surfcoat.2017.08.058
|
9 |
Ge M Z, Xiang J Y, Yang L, et al. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid [J]. Surf. Coat. Technol., 2017, 310: 157
doi: 10.1016/j.surfcoat.2016.12.093
|
10 |
Zhou A J, Sun D L, Yang D Z. The natural aging characteristics of 2091 Al-Li alloy [J]. Mater. Mech. Eng., 1996, 20(5): 24
|
|
周爱军, 孙东立, 杨德庄. 2091铝锂合金的自然时效特性 [J]. 机械工程材料, 1996, 20(5): 24
|
11 |
Liu H, Zhao G, Liu C M, et al. Artificial aging precipitation behavior of 6000 series alloys naturally aged and pre-aged [J]. Trans. Mater. Heat Treat., 2008, 29(4): 74
|
|
刘 宏, 赵 刚, 刘春明 等. 自然时效及预时效6000系合金人工时效析出行为 [J]. 材料热处理学报, 2008, 29(4): 74
|
12 |
Nazari F, Honarpisheh M, Zhao H Y. Effect of stress relief annealing on microstructure, mechanical properties, and residual stress of a copper sheet in the constrained groove pressing process [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 4361
|
13 |
Sharma V, Pandey P M. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel [J]. Ultrasonics, 2016, 70: 172
doi: 10.1016/j.ultras.2016.05.001
pmid: 27179142
|
14 |
Wang Q C. Evaluation and relief of residual stresses in aluminum alloys for aircraft structures [D]. Hangzhou: Zhejiang University, 2003
|
|
王秋成. 航空铝合金残余应力消除及评估技术研究 [D]. 杭州: 浙江大学, 2003
|
15 |
Zhang J X, Liu K, Zhao K, et al. A study on the relief of residual stresses in weldments with explosive treatment [J]. Int. J. Solids Struct., 2005, 42: 3794
doi: 10.1016/j.ijsolstr.2004.11.017
|
16 |
Ji S D, Zhang L G, Fang H Y, et al. Influence of local peening on welding residual stress of Francis turbine runner [J]. Trans. China Weld. Inst., 2007, 28(1): 81
|
|
姬书得, 张利国, 方洪渊 等. 局部锤击法对水轮机转轮焊接残余应力场的影响 [J]. 焊接学报, 2007, 28(1): 81
|
17 |
Chen D S, Wang L W, Liu Y M, et al. Research on the decreasing residual stress of casting by using static force method [J]. Mach. Tool Hydraulics, 2005, (5): 30
|
|
陈殿生, 王立威, 刘雅梅 等. 静态作用应力法消除铸件残余应力的研究 [J]. 机床与液压, 2005, (5): 30
|
18 |
Tang F, Lu A L, Mei J F, et al. Research on residual stress reduction by a low frequency alternating magnetic field [J]. J. Mater. Process. Technol., 1998, 74: 255
doi: 10.1016/S0924-0136(97)00279-3
|
19 |
Gao H J, Wu S F, Wu Q, et al. Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy [J]. Mater. Des., 2020, 195: 108954
doi: 10.1016/j.matdes.2020.108954
|
20 |
Zhang X F, Qin R S. Electric current-driven migration of electrically neutral particles in liquids [J]. Appl. Phys. Lett., 2014, 104: 114106
doi: 10.1063/1.4869465
|
21 |
Xiao S H, Han E H, Guo J D. Effect of high current density electropulsing on the corrosion resistance of X70 pipeline steel [J]. Chin. J. Mater. Res., 2006, 20: 1
|
|
肖素红, 韩恩厚, 郭敬东. 脉冲电流处理对X70管线钢腐蚀性能的影响 [J]. 材料研究学报, 2006, 20: 1
|
22 |
Qin R S. Critical assessment 8: Outstanding issues in electropulsing processing [J]. Mater. Sci. Technol., 2015, 31: 203
doi: 10.1179/1743284714Y.0000000630
|
23 |
Lobanov L, Pivtorak V, Paschin N, et al. Application of local current pulses for determination and control of residual stresses [J]. Adv. Mater. Res., 2014, 996: 386
|
24 |
Wang J P, He X C, Wang B Q, et al. Residual stress release in quenched 40Cr steel under electropulsing [J]. Chin. J. Mater. Res., 2007, 21: 41
|
|
王景鹏, 贺笑春, 王宝全 等. 脉冲电流作用下40Cr钢淬火残余应力的消除 [J]. 材料研究学报, 2007, 21: 41
|
25 |
Pan L, He W, Gu B P. Effects of electric current pulse on dislocation density and residual stresses of 45 carbon steel workpieces [J]. Trans. Mater. Heat Treat., 2015, 36(suppl.1) : 134
|
|
潘 龙, 何 闻, 顾邦平. 电流脉冲对45碳钢试样位错密度和残余应力的影响 [J]. 材料热处理学报, 2015, 36(): 134
|
26 |
Pan L, Wang B S, Xu Z Q. Effects of electropulsing treatment on residual stresses of high elastic cobalt-base alloy ISO 5832-7 [J]. J. Alloys Compd., 2019, 792: 994
doi: 10.1016/j.jallcom.2019.04.091
|
27 |
Xiang S Q, Zhang X F. Dislocation structure evolution under electroplastic effect [J]. Mater. Sci. Eng., 2019, A761: 138026
|
28 |
Cai Z P, Huang X Q. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current [J]. Mater. Sci. Eng., 2011, A528: 6287
|
29 |
Xiang S Q, Zhang X F. Residual stress removal under pulsed electric current [J]. Acta. Metall. Sin. (Engl. Lett.), 2020, 33: 281
|
30 |
Stepanov G V, Babutskii A I. Stress relaxation in steel caused by a high-density current [J]. Strength Mater., 1993, 25: 697
doi: 10.1007/BF01135524
|
31 |
Stepanov G V, Babutskii A I. Effect of electric current on stress relaxation in metal [J]. Strength Mater., 1996, 28: 125
doi: 10.1007/BF02215837
|
32 |
Stepanov G V, Babutskii A I, Mameev I A. The effect of the pulse electric current treatment on residual stresses arising in grinding [J]. Strength Mater., 2009, 41: 623
doi: 10.1007/s11223-009-9171-y
|
33 |
Stepanov G, Babutsky A, Kruszka L. Residual stresses relaxation caused by pulsed electric current [J]. Mater. Sci. Forum, 2010, 638-642: 2429
doi: 10.4028/www.scientific.net/MSF.638-642.2429
|
34 |
Stepanov G V, Babutskii A I, Mameev I A, et al. Experimental evaluation of pulse electric current effect on residual stresses in composite-to-copper joints [J]. Strength Mater., 2008, 40: 452
doi: 10.1007/s11223-008-9055-6
|
35 |
Babutskyi A, Chrysanthou A, Chyzhyk G, et al. Effect of high-density current electropulsing on corrosion cracking of titanium aluminide intermetallic [J]. Mater. Corros., 2021, 72: 1243
|
36 |
Deng G H. Research on the electro-pulse generator for residual stress relief [D]. Hangzhou: Zhejiang University, 2014
|
|
邓国辉. 电流脉冲消除残余应力装置的研究 [D]. 杭州: 浙江大学, 2014
|
37 |
Pan L. Research on the mechanisms and related experimtents of controlling residual stress in carbon steel based on pulse current method [D]. Hangzhou: Zhejiang University, 2016
|
|
潘 龙. 脉冲电流法调控碳钢残余应力的机理及相关实验研究 [D]. 杭州: 浙江大学, 2016
|
38 |
Sheng Y, Hua Y, Wang X, et al. Application of high-density electropulsing to improve the performance of metallic materials: Mechanisms, microstructure and properties [J]. Materials, 2018, 11: 185.
doi: 10.3390/ma11020185
|
39 |
Gu B P, Lai J T, Hu X, et al. Application of high-energy oscillating electric current pulse to relieve pulsed-laser surface irradiation induced residual stress in AISI 1045 steel [J]. J. Mater. Res., 2017, 32: 473
doi: 10.1557/jmr.2016.402
|
40 |
Pan L. Influence of electropulsing treatment on residual stresses and tensile strength of as-quenched medium carbon steel [J]. J. Phys.: Conf. Ser., 2019, 1187: 032054
|
41 |
Ding S L, Xiang S Q, Ba X, et al. Improvement of corrosion resistance of simulated weld heat affected zone in high strength pipeline steel using electropulsing [J]. ISIJ Int., 2020, 60: 2015
doi: 10.2355/isijinternational.ISIJINT-2019-565
|
42 |
Babutskyi A, Mohin M, Chrysanthou A, et al. Effect of electropulsing on the fatigue resistance of aluminium alloy 2014-T6 [J]. Mater. Sci. Eng., 2020, A772: 138679
|
43 |
Ben D, Yang H J, Ma Y R, et al. Declined fatigue crack propagation rate of a high-strength steel by electropulsing treatment [J]. Adv. Eng. Mater., 2019, 21: 1801345
doi: 10.1002/adem.201801345
|
44 |
Xiang S Q, Ma R, Zhang X F. Removing hydrogen in solid metal using electric current pulse [J]. J. Alloys Compd., 2020, 845: 156083
doi: 10.1016/j.jallcom.2020.156083
|
45 |
Song X D, Wang F, Qian D S, et al. Tailoring the residual stress and mechanical properties by electroshocking treatment in cold rolled M50 steel [J]. Mater. Sci. Eng., 2020, A780: 139171
|
46 |
Grimm T J, Roth J T, Ragai I. Electrically assisted global springback elimination in AMS-T-9046 titanium after single point incremental forming [A]. ASME 2016 11th International Manufacturing Science and Engineering Conference [C]. Blacksburg: ASME, 2016
|
47 |
Park G D, Tran V L, Hong S T, et al. Electrically assisted stress relief annealing of automotive springs [J]. J. Mech. Sci. Technol., 2017, 31: 3943
doi: 10.1007/s12206-017-0740-x
|
48 |
Levitin V V, Loskutov S V. The effect of a current pulse on the fatigue of titanium alloy [J]. Solid State Commun., 2004, 131: 181
doi: 10.1016/j.ssc.2004.05.011
|
49 |
Ye Y, Li X, Kuang J, et al. Effects of electropulsing assisted ultrasonic impact treatment on welded components [J]. Mater. Sci. Technol., 2015, 31: 1583
doi: 10.1179/1743284715Y.0000000078
|
50 |
Ye Y D, Kuang J, Kure-Chu S Z, et al. Improvement of microstructure and surface behaviors of welded S50C steel components under electropulsing assisted ultrasonic surface modification [J]. J. Mater. Res., 2016, 31: 2125
doi: 10.1557/jmr.2016.127
|
51 |
Wang H B, Yang X H, Li H, et al. Enhanced fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by electropulsing-assisted ultrasonic surface rolling process [J]. J. Mater. Res., 2018, 33: 3827
doi: 10.1557/jmr.2018.307
|
52 |
Wang L S, Ye X X, Liu T, et al. Effects of electropulsing assisted ultrasonic impact treatment on residual stress and microhardness of weld [J]. Mater. Rev., 2015, 29(18): 71
|
|
王铃声, 叶肖鑫, 刘 涛 等. 电脉冲辅助超声冲击技术对焊缝残余应力及显微硬度的影响 [J]. 材料导报, 2015, 29(18): 71
|
53 |
Tang G Y, Zheng M X, Zhu Y H, et al. Electroplastic drawing of austenitic stainless steel [J]. Steel Wire Products, 1997, 23(1): 8
|
|
唐国翌, 郑明新, 朱永华 等. 奥氏体不锈钢丝的电塑性拔制 [J]. 金属制品, 1997, 23(1): 8
|
54 |
Egea A J S, Rojas H A G, Celentano D J, et al. Thermomechanical analysis of an electrically assisted wire drawing process [J]. J. Manuf. Sci. Eng., 2017, 139: 111017
doi: 10.1115/1.4037798
|
55 |
Ao D W, Chu X R, Yang Y, et al. Effect of electropulsing on springback during V-bending of Ti-6Al-4V titanium alloy sheet [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 3197
|
56 |
Liang P C, Lin K L. Non-deformation recrystallization of metal with electric current stressing [J]. J. Alloys Compd., 2017, 722: 690
doi: 10.1016/j.jallcom.2017.06.032
|
57 |
Park J W, Jeong H J, Jin S W, et al. Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy [J]. Mater. Charact., 2017, 133: 70
doi: 10.1016/j.matchar.2017.09.021
|
58 |
Sydorenko Y M, Pashchyn M O, Mykhodui O L, et al. Effect of pulse current on residual stresses in AMg6 aluminum alloy in electrodynamic treatment [J]. Strength Mater., 2020, 52: 731
doi: 10.1007/s11223-020-00226-2
|
59 |
Lobanov L M, Pashchin N A, Mikhodui O L, et al. Electric pulse component effect on the stress state of AMg6 aluminum alloy welded joints under electrodynamic treatment [J]. Strength Mater., 2018, 50: 246
doi: 10.1007/s11223-018-9965-x
|
60 |
МLobanov L, АPashchin N, Mikhodui O L, et al. Influence of the parameters of electrodynamic actions on the stressed state of welded joints of sheets of AMg6 alloy [J]. Mater. Sci., 2017, 53: 1
|
61 |
Lobanov L, Pashсhin N. Electrodynamic treatment by electric current pulses as effective method of control of stress-strain states and improvement of life of welded structures [J]. Procedia Struct. Integr., 2019, 16: 27
doi: 10.1016/j.prostr.2019.07.018
|
62 |
Lobanov L M, Kondratenko I P, Zhiltsov A V, et al. Development of post-weld electrodynamic treatment using electric current pulses for control of stress-strain states and improvement of life of welded structures [J]. Mater. Perform. Charact., 2018, 7: 941
|
63 |
Okazaki K, Kagawa M, Conrad H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium [J]. Mater. Sci. Eng., 1980, 45: 109
|
64 |
Sprecher A F, Mannan S L, Conrad H. Overview no. 49: On the mechanisms for the electroplastic effect in metals [J]. Acta Metall., 1986, 34: 1145
doi: 10.1016/0001-6160(86)90001-5
|
65 |
Roschupkin A M, Bataronov I L. Physical basis of the electroplastic deformation of metals [J]. Russian Phys. J., 1996, 39: 230
doi: 10.1007/BF02067644
|
66 |
Kravchenko V Y. Effect of directed electron beam on moving dislocations [J]. Sov. Phys. JETP, 1967, 24: 1135
|
67 |
Roshchupkin A M, Miloshenko V E, Kalinin V E. The electron retardation of dislocations in metals [J]. Fiz. Tverd. Tela, 1979, 21: 909
|
68 |
Klimov K M, Shnyrev G D, Novikov I I. " Electroplasticity" of metals [J]. Sov. Phys. Dokl., 1975, 19: 787
|
69 |
Cao W, Sprecher A F, Conrad H. Measurement of the electroplastic effect in Nb [J]. J. Phys.: Sci. Instrum., 1989, 22E: 1026
|
70 |
Molotskii M. Work hardening of crystals in a magnetic field [J]. Philos. Mag. Lett., 1996, 73: 11
doi: 10.1080/095008396181055
|
71 |
Molotskii M I. Theoretical basis for electro- and magnetoplasticity [J]. Mater. Sci. Eng., 2000, A287, 248
|
72 |
Zhao S T, Zhang R P, Chong Y, et al. Defect reconfiguration in a Ti-Al alloy via electroplasticity [J]. Nat. Mater., 2021, 20: 468
doi: 10.1038/s41563-020-00817-z
|
73 |
Troitskii O A, Rozno A G. Electroplastic effect in metals [J]. Fiz. Tverd. Tela, 1970, 12: 203
|
74 |
Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
|
75 |
Conrad H. Electroplasticity in metals and ceramics [J]. Mater. Sci. Eng., 2000, A287: 276
|
76 |
Conrad H. Thermally activated plastic flow of metals and ceramics with an electric field or current [J]. Mater. Sci. Eng., 2002, A322: 100
|
77 |
Troitskii O A, Likhtman V I. The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state [J]. Soviet Phys. Doklady, 1963, 8: 91
|
78 |
Troitskii O A. Effect of the electron state of a metal on its mechanical properties and the phenomenon of electroplasticity [J]. Strength Mater., 1977, 9: 35
doi: 10.1007/BF01534611
|
79 |
Troitskii O A. Electromechanical effect in metals [J]. Zhetf Pisma Redaktsiiu, 1969, 10: 18
|
80 |
Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic effect in metals [J]. Scr. Metall., 1979, 13: 277
doi: 10.1016/0036-9748(79)90311-9
|
81 |
Okazaki K, Kagawa M, Conrad H. Effects of strain rate, temperature and interstitial content on the electroplastic effect in titanium [J]. Scr. Metall., 1979, 13: 473
doi: 10.1016/0036-9748(79)90072-3
|
82 |
Tang D W, Zhou B L, Cao H, et al. Thermal stress relaxation behavior in thin films under transient laser-pulse heating [J]. J. Appl. Phys., 1993, 73: 3749
doi: 10.1063/1.352907
|
83 |
Ma H C, Guo J D, Chen J Q, et al. Prediction model of lifetime for copper pillar bumps under coupling effects of current and thermal cycling [J]. J. Mater. Sci. -Mater. Electron., 2016, 27: 1184
doi: 10.1007/s10854-015-3871-9
|
84 |
Zhang H X. Dislocation behavior under the coupling of electron wind force and joule heating in plastic forming of Al-Zn-Mg alloy [D]. Beijing: University of Science and Technology Beijing, 2021
|
|
张鹤雄. Al-Zn-Mg合金塑性成形中电子风力和焦耳热耦合下的位错行为 [D]. 北京: 北京科技大学, 2021
|
85 |
Zhang H X, Zhang X F. Suppressing or promoting: The effect of coupled electron-heat field on serration behavior [J]. J. Alloys Compd., 2020, 818: 152920
doi: 10.1016/j.jallcom.2019.152920
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|