Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (7): 711-717    DOI:
Current Issue | Archive | Adv Search |
PRECIPITATION AND GROWTH OF DISPERSED PRECIPITATES IN RAPIDLY SOLIDIFIED TITANIUM ALLOYS CONTAINING RARE EARTH NEODYMIUM
YAN Ying; HAN Dong; CAO Mingzhou (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1995-09-15; in revised form 1996-03-18)
Cite this article: 

YAN Ying; HAN Dong; CAO Mingzhou (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1995-09-15; in revised form 1996-03-18). PRECIPITATION AND GROWTH OF DISPERSED PRECIPITATES IN RAPIDLY SOLIDIFIED TITANIUM ALLOYS CONTAINING RARE EARTH NEODYMIUM. Acta Metall Sin, 1996, 32(7): 711-717.

Download:  PDF(507KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of heat treatment on growth of precipitates in Ti-5Al-1.5Nd and Ti-SAl-4Sn-1.5Nd(mass fraction, %) alloy was studied in detail. The experimental results show that many near spherical precipitates are present in the matrix of rapidly solidified titanium alloys containing neodymium. But along the grain boundaries, sub-grain boundaries and dislocation lines, and so on, some particles are deposited in the form of strings of pearls. When Ti alloys containing neodymium are subjected to heat treatments at 650, 700, 750, and 800℃ for 1, 8, 27 and 56 h, respectively, the precipitated particles coarsen slowly. EDAX results show that these particles in the Ti-5Al-1.5Nd alloy are found to be rich in Nd. On the basis of the electron diffraction pattern, these particles are identified as Nd_2O_3 with a cubic structure and lattice parameter a=1. 108 nm. The activation energy for the growth of particles is estimated to be 117 kJ/mol. The addition of tin improved the dispersed degree and reduced the rate of growth of these particles which are found to contain both Nd and Sn by the EDAX analysis. And the average atom ratio of neodymium and tin is about 1.37 : 1 in these particles. Electron diffraction analysis shows that the fine precipitates are orthorhombic Nd_5Sn_4 with lattice parameters a= 0.814 nm, b = 1.732 nm,and c= 0.8 14 nm. The growth activation energy of the particles is estimated to be 170 kJ / mol.Correspondent: YAN Ying, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015
Key words:  titanium alloy      rapid solidification      Nd-rich precipitate      growth activation energy     
Received:  18 July 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I7/711

1GschneidnerKAJ,EyringLR.HandbookonthePhysicsandChemistryofRareEarths,Amsterdam,NewYork,Oxford:North-HollandPublishingCompany,1979;2:162李阁平.中国科学院金属研究所博士学位论文,19953 LifshitzIM,SlyozovVV,JPhysChemSolids,1961;19:354WagnerC.ZElektrochem,1961,65:5815BhattacharyyaSK,RussellKC.MetallTrans,1972;3:21956Diffusiondata.Clausthol-Z,Germany:TransThohPublications,1972;6:597RoeWP,PalmerHR,OpieWR.TransAmSocMet,1960;52:1918KonitzerDG,KirchheinR,FraserHL.MaterResSocSympProc,1984;28:3819AskillJ,GibbsGB.PhysStatusSolidi,1965;11:557
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[8] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[9] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[10] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[14] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
No Suggested Reading articles found!