Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 633-640    DOI: 10.3724/SP.J.1037.2013.00585
Current Issue | Archive | Adv Search |
SHORT-TERM PROCESS OF RECYCLING CEMENTED CARBIDE SCRAPS AND PREPARATION OF HIGH PERFORMANCE HARD METALS
WANG Yao, LIU Xuemei, SONG Xiaoyan(), WEI Chongbin, WANG Haibin, WANG Xilong
Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article: 

WANG Yao, LIU Xuemei, SONG Xiaoyan, WEI Chongbin, WANG Haibin, WANG Xilong. SHORT-TERM PROCESS OF RECYCLING CEMENTED CARBIDE SCRAPS AND PREPARATION OF HIGH PERFORMANCE HARD METALS. Acta Metall Sin, 2014, 50(5): 633-640.

Download:  HTML  PDF(9750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recycling of cemented carbide scraps is drawing more and more attention to companies and countries all over the world. However, the recycling method has always been a problem where there are many factors involved. The feasibility, recycling rate, energy consumption and the environment conservation are all significant factors for the recycling method that need to be considered. In this work, using the cemented carbides scraps as the raw material, the recycled WC-16%Co (mass fraction) composite powder was synthesized by oxidation, reduction and carbonization reactions. Then the recycled composite powder was sintered to prepare the hard metal bulks by sinter-HIP (hot isostatic pressing). The results indicate that with the carbon addition increases, the content of Co6W6C in the composite powders decreases while the total carbon and free carbon increase. When the carbon addition is 16.60%, the high-performance hard metal bulks can be obtained, with a fracture toughness of 23.05 MPa·m1/2 and a transverse rupture strength of 4020 MPa. Moreover, the Co phase distributes more homogeneously in the recycled hard metals. The larger mean free path of the Co phase and the lower contiguity degree of the WC grains lead to the high performance of the recycled hard metal materials.

Key words:  recycling of the cemented carbides scrap      carbon addition      WC-Co composite powder      mechanical property     
ZTFLH:  TG146  
Fund: National High Technology Research and Development Program of China (No.SS2013AA031401), National Natural Science Foundation of China (No.51174009),Natural Science Foundation of Beijing (Nos.2131001 and 2133062) and Fund of State Key Laboratory of New Metal Materials (No.2012-Z08)
About author:  null

王 瑶, 男, 1988年生, 硕士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00585     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/633

Fig.1  

废旧WC-16%Co硬质合金氧化后所得粉末的SEM像和XRD谱

Fig.2  

WO3和CoWO4与C发生原位还原碳化反应的热力学计算结果

Fig.3  

不同配C量下再生复合粉的XRD谱

Fig.4  

不同配C量下再生复合粉制备的再生硬质合金块体的XRD谱

Carbon addition O Total carbon Free carbon Co
16.50
16.60
16.70
16.75
Powder requirement
0.27
0.32
0.32
0.52
≤0.70
4.88
5.06
5.08
5.40
4.87~5.20
0.04
0.06
0.09
0.25
-
15.9
15.8
15.4
15.6
15.0~16.0
表1  不同配C量时合成的再生WC-16%Co复合粉中各元素含量
Fig.5  

不同配C量下再生复合粉制备的再生硬质合金块体的OM像

Fig.6  

不同配C量下再生复合粉制备的再生硬质合金块体的SEM像

Carbon addition
%
Density
g·cm-3
Hardness
kg·mm-2
KIC
MPa·m1/2
TRS
MPa
16.50 13.79 1313 17.59 2911
16.60 13.90 1238 23.05 4020
16.70 13.85 1306 18.57 3654
16.75 13.82 1282 17.60 2337
表2  不同配C量下制备的再生WC-16%Co硬质合金的性能
Fig.7  

不同配C量下再生硬质合金的显微组织参数与性能的关系图

Fig.8  

配C量为16.60%时制备的再生硬质合金块体的TEM像

[1] Fag Z Z, Wang X, Ryu T, Hwang K S, Sohn H Y. Int J Refract Met Hard Mater, 2009; 27: 288
[2] Wei C B, Song X Y, Fu J, Liu X M, Wang H B, Gao Y, Wang Y. Cryst Eng Comm, 2013; 15: 3305
[3] Liu S, Yi D Q, Li Y X, Zou D. Acta Metall Sin (Engl Lett), 2002; 15: 448
[4] Kim H C, Shon I J, Yooh J K, Doh J M. Int J Refract Met Hard Mater, 2007; 25: 46
[5] Xiong Y H, Lau K, Zhou X Y, Schoenung J M. J Clean Prod, 2008; 16: 1118
[6] Venkateswaran S, Schubert W D, Lux B. Int J Refract Met Hard Mater, 1996; 14: 263
[7] Zhang Q X, Zhang J X. Rare Met Cem Carbides, 1995; (4): 48
(张齐勋, 张家雄. 稀有金属与硬质合金, 1995; (4): 48)
[8] Lee J C, Kim E Y, Kim J H, Kim W, Kim B S, Pandey B D. Int J Refract Met Hard Mater, 2011; 29: 365
[9] Hu Y J, Sun P M, Li H G, Chen A L. Rare Met Cem Carbides, 2004; 32(3): 53
(胡宇杰, 孙培梅, 李洪桂, 陈爱良. 稀有金属与硬质合金, 2004; 32(3): 53)
[10] Sun B Q. Rare Met Cem Carbides, 1998; (3):12
(孙宝琦. 稀有金属与硬质合金, 1998; (3): 12)
[11] Liu W B, Song X Y, Zhang J X, Zhang G Z, Liu X M. Int J Refract Met Hard Mater, 2009; 27: 115
[12] Zhang W B, Sha C S, Du Y, Wen G H, Xie W, Wang S Q. Acta Metall Sin, 2011; 47: 1307
(张伟彬, 沙春生, 杜 勇, 温光华, 谢 文, 王社权. 金属学报, 2011; 47: 1307)
[13] Cao Z M, Song X Y, Qiao Z Y. Rare Met, 2008; 32: 216
(曹战民, 宋晓艳, 乔芝郁. 稀有金属, 2008; 32: 216)
[14] Wei C B, Song X Y, Fu J, Lv X S, Wang H B, Gao Y, Zhao S X, Liu X M. J Mater Sci Technol, 2012; 28: 837
[15] Zhao S X, Song X Y, Liu X M, Wei C B, Wang H B, Gao Y. Acta Metall Sin, 2011; 47: 1188
(赵世贤, 宋晓艳, 刘雪梅, 魏崇斌, 王海滨, 高 杨. 金属学报, 2011; 47: 1188)
[16] Joost R, Pirso J, Viljus M, Letunovits S, Juhani K. Est J Eng, 2012; 18: 127
[17] Liu W B, Song X Y, Zhang J X, Zhang G Z, Liu X M. Mater Chem Phy, 2008; 109: 235
[18] Konyashin I, Hlawatschek S, Ries B, Lachmann F, Dorn F, Sologubenko A, Weirich T. Int J Refract Met Hard Mater, 2009; 27: 234
[19] Christensen M, Wahnström G. Phys Rev, 2003; 67B: 115415
[20] Jia K, Fischer T E, Gallois B. Nanostruct Mater, 1998; 10: 875
[21] Fang Z Z. Int J Refract Met Hard Mater, 2005; 23: 119
[22] Fang Z Z, Lockwood G, Griffo A. Metall Mater Trans, 1999; 30A: 3231
[23] Wang X, Hwang K S, Koopman M, Fang Z Z, Zhang L H. Int J Refract Met Hard Mater, 2013; 36: 46
[24] Song S H, Li J C. Acta Metall Sin, 1987; 23: 521
(宋士泓, 李健纯. 金属学报, 1987; 23: 521)
[25] Liu M L, Huang X Y, Duan S T, Shao D Q, Cui Y M, Yao Z M. Acta Metall Sin, 1982; 18: 689
(刘曼朗, 黄孝瑛, 段石田, 邵大琴, 崔玉梅, 姚振梅. 金属学报, 1982; 18: 689)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!