Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 475-482    DOI: 10.3724/SP.J.1037.2012.00614
Current Issue | Archive | Adv Search |
FORMATION MECHANISM OF ANOMALOUS EUTECTIC AND MICROSTRUCTURE EVOLUTION IN HIGHLY UNDERCOOLED SOLIDIFICATION OF Ni-30%Sn ALLOY
GUO Xiong, LIN Xin, WANG Zhitai, CAO Yongqing, PENG Dongjian, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

GUO Xiong, LIN Xin, WANG Zhitai, CAO Yongqing, PENG Dongjian, HUANG Weidong. FORMATION MECHANISM OF ANOMALOUS EUTECTIC AND MICROSTRUCTURE EVOLUTION IN HIGHLY UNDERCOOLED SOLIDIFICATION OF Ni-30%Sn ALLOY. Acta Metall Sin, 2013, 29(4): 475-482.

Download:  PDF(3159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eutectic solidification involves many important metals and inorganic non-metallic materials. To date, there still exist a large controversy on the formation mechanism of anomalous eutectic under the nonequilibrium rapid solidification. In this work, adopting glass flux method combined with cyclical superheating, the recalescence behaviors and microstructure evolution in highly undercooled solidification of Ni-30%Sn hypoeutectic alloy were investigated. It is found that, there is not an obvious recalescence process in the alloy melts with the low undercooling. With increasing the melt undercooling, the solidification microstructure experienced a gradual phase evolutions from αNi dendrite + (α-Ni+Ni3Sn) lamellar or feathery eutectic to completely (α-Ni+Ni3Sn) anomalous eutectic, which led the recalescence process to occur from twice to once in the cooling process. Through analyzing the nucleation behaviors of α-Ni and Ni3Sn phases and the relationships between their growth velocities and the melt undercoolings, and the variation of their crystalline fraction in rapid recalescence process, the formation mechanism of anomalous eutectic was explained. The formation of anomalous eutectic in highly undercooled Ni-30%Sn hypoeutectic alloy should be attributed to the following two reasons: in the large melt undercooling, the complete coarsening and remelting of the pre-formed refined α-Ni dendrite skeleton occured in the subsequent recalescence process, and then the dendrite fragments were surrounded by the precipitated Ni3Sn phase, which eventually led to the formation of anomalous eutectic. With the undercooling increased, the primary single-phase dendritic growth will change to the two-phase dendritic growth, the coarsening and remelting of two-phasic dendrites occured in the subsequent larger recalescence process, which also led to the formation of anomalous eutectic.

Key words:  Ni-Sn alloy      high undercooling      microstructure evolution      anomalous eutectic,      formation mechanism     
Received:  16 October 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00614     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/475

[1] Zhou Y H, Hu Z Q, Jie W Q. Solidification Technology. Beijing: Machanical Industry Press, 1998: 227


(周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998: 227)

[2] Kear B H. Rapidly Solidified Amorphous and Crystalline Alloys. NorthHolland: Elsevier Science Pub Co, 1982: 49

[3] Hu H Q. Fundamentals of Metal Solidification. Beijing: Machanical Industry Press, 2000: 255

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 255)

[4] Wang B H. PhD Dissertation, Xiangtan University, 2008

(王宝华. 湘潭大学博士学位论文, 2008)

[5] Chen D. Master Thesis, Northwestern Polytechnical University, Xi'an, 2006

(陈达. 西北工业大学硕士学位论文, 西安, 2006)

[6] Fei J Y, Zhou A M, Wang B L. Surf Technol, 1990; 19(6): 7

(费敬银, 周爱梅, 王宝珑. 表面技术, 1990; 19(6): 7)

[7] Zhang Z Z, Song G S, Yang G C, Zhou Y H. Prog Nat Sci, 2000; 10(5): 54

(张振忠, 宋广生, 杨根仓, 周尧和. 自然科学进展, 2000; 10(5): 54)

[8] Kattamis T Z, Flemings M C. Metall Trans, 1970; 1: 1449

[9] Jones B L. Metall Trans, 1971; 2A: 2950

[10] Li M, Nagashio K, Kuribayashi K. Acta Mater, 2002; 50: 3239

[11] Li M, Nagashio K, Ishikawa T, Yoda S, Kuribayashi K. Acta Mater, 2005; 53: 731

[12] Wei B B, Herlach D M, Feuerbacher B, Sommer F. Acta Metall Mater, 1993; 41: 1801

[13] Wei B B, Yang G C, Zhou Y H. Acta Aeronaut Astronaut Sin, 1990; 11(1): 59

(魏炳波, 杨根仓, 周尧和. 航空学报, 1990; 11(1): 59)

[14] Wei B B. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 1989

(魏炳波.西北工业大学博士学位论文, 西安, 1989)

[15] Wei B B, Yang G C, Zhou Y H. Acta Metall, 1991; 39: 1249

[16] Wei B B, Herlach D M, Sommer F, Kurz W. Mater Sci Eng, 1993; A173: 355

[17] Xing L Q, Yang G C, Zhou Y H, Guo Z Q. Mater Sci Prog, 1991; 5(1): 16

(邢力谦, 杨根仓, 周尧和, 郭振琪. 材料科学进展, 1991; 5(1): 16)

[18] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647

[19] Li J F, Jie W Q, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806

[20] Yang C, Gao J, Zhang Y K, Kokbe M, Herlach D M. Acta Mater, 2011; 59: 3915

[21] Lin X, Yue T M, Yang H O, Huang W D. Metall Mater Trans, 2007; 38A: 127

[22] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901

[23] Herlauch D M. Mater Sci Eng, 1994; R12: 177

[24] Shao G, Tsakiropoulos P. Acta Metall Mater, 1994; 42: 2937

[25] Wu Y, Pillone T J, Shiohara Y. Metall Trans, 1987; 18A: 915

[26] Smityhells C J. Metals Reference Book. 5th Ed, London: Butterworth & Ltd., 1976: 186

[27] Lipon J, Kurz W, Trivedi R. Acta Metall, 1987; 35: 957

[28] Trivedi R, Lipton J, Kurz W. Acta Metall, 1987; 35: 965
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[8] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[9] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[10] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[11] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[13] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[14] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[15] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
No Suggested Reading articles found!