Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 464-474    DOI: 10.3724/SP.J.1037.2012.00654
Current Issue | Archive | Adv Search |
MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY
LI Shaoqiang1,2), CHEN Zhiyong1), WANG Zhihong3), LIU Jianrong1), WANG Qingjiang1), YANG Rui1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Western Superconducting Technologies Co. Ltd., Xi'an 710018
3) AVIC Shenyang Engine Design & Research Inistitute, Shenyang 110000  
Cite this article: 

LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY. Acta Metall Sin, 2013, 29(4): 464-474.

Download:  PDF(10271KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high temperature titanium alloy with rare earth element Nd addition was prepared by rapidly solidified powder metallurgy (RS-PM) processing. The microstructure of RS-PM high temperature titanium alloy has been investigated systemically. Microstructure study showed that the α' martensite phase in the RS powders initially decomposed at 700 ℃ and vastly at 900 ℃during the hot isostatic pressing (HIP) process. The decomposition products were equiaxed or lamellar α phase as well as grain boundary β phase. The microstructure of the specimen HIPed at the temperature in (α+β) phase field contained equiaxed α phase, lamellar α phase and β phase. The size of equiaxed α phase increased while the aspect ratio of the lamellar α phase decreased when the HIP temperature increased. The microstructure of the specimen HIPed at the temperature in β phase field contained coarsed lamellar α phase, grain boundary α phase and β phase. The microstructure became finer with decreasing the powder particle size. The microstructure of the sample HIPed in the (α+β) phase field and then heat treated in the (α+β) phase field was bi-modal microstructure containing equiaxed α phase and β transformed structure. The microstructure of the sample HIPed in the β phase field and then heat treated in the (α+β) phase field was ternary microstructure containing equiaxed α phase, lamellar α phase and β transformed structure. The microstructure of the sample HIPed in the (α+β) phase field or β phase field and then heat treated in the β phase field was basket-weave structure. The proportion of rich-Nd phases increased with increasing the Nd content,resulting in the reduction of original β grain size.

Key words:  rapid solidification      powder metallurgy      high temperature titanium alloy      hot isostatic pressing      microstructure     
Received:  01 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00654     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/464

[1] Li G P.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1995


(李阁平. 中国科学院金属研究所博士学位论文, 沈阳, 1995)

[2] Chen Z Y.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(陈志勇. 中国科学院金属研究所博士学位论文, 沈阳, 2008)

[3] Xu F.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007

(徐锋.中国科学院金属研究所博士学位论文, 沈阳, 2007)

[4] Zhao L.  Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(赵亮. 中国科学院金属研究所硕士学位论文, 沈阳, 2008)

[5] Xu F, Li G P, Yang R.  Acta Metall Sin, 2006; 42: 770

(徐锋, 李阁平, 杨锐. 金属学报, 2006; 42: 770)

[6] Germain L, Gey N, Humbert M, Hazotte A, Bocher P, Jahazi M.  Mater Charact, 2005; 54: 216

[7] Wanjara P, Jahazi M, Monajati H, Yue S.  Mater Sci Eng, 2006; A416: 300

[8] Madsen A, Ghonem H.  Mater Sci Eng, 1994; A177: 63

[9] Weinem D, Kumpert J, Peters M, Kaysser W A.  Mater Sci Eng, 1996; A206: 55

[10] Hagiwara M, Emura S.  Mater Sci Eng, 2003; A352: 85

[11] Madsen A, Ghonem H.  J Mater Eng Perform, 1995; 4: 301

[12] Cui W F, Liu C M, Zhou L, Luo G Z.  Mater Sci Eng, 2002; A323: 192

[13] Lee D H, Nam S W, Choe S J.  Scr Mater, 1999; 40: 265

[14] Kumar A, Singh N, Singh V.  Mater Charact, 2003; 51: 225

[15] Wanjara P, Jahazi M, Monajati H, Yue S.  Mater Sci Eng, 2006; A416: 300

[16] Srinadh K V S, Singh N, Singh V.  Bull Mater Sci, 2007; 30: 595

[17] Smith C H.  Mater Sci Eng, 1987; 89: 103

[18] Froes F H, Eylon D, Rowe R G, Yolton C F.  Bull Mater Sci, 1989; 12: 293

[19] Konitzer D G, Stanley J T, Loretto M H, Fraser H L.  Acta Mater, 1986; 34: 1269

[20] Broderick T F, Jackson A G, Jones H, Froes F H.  Metall Mater Trans, 1985; 16A : 1951

[21] Lu Y Z, Giessen B C, Whang S H.  Mater Res Soc Symp Proc, 1986; 58: 377

[22] Whang S H, Lu Y Z, Kim Y W.  J Mater Sci Lett, 1985; 4: 883

[23] Jones H, Joshi A, Rowe R G, Froes F H.  Int J Powder Metall, 1987; 23: 13

[24] Suryanarayana C, Froes F H, Rowe R G.  Int Mater Rev, 1991; 36(3): 85

[25] Habel U, Mctiernan B J.  Intermetallics, 2004; 12: 63

[26] Lograsso B K, Koss D A.  Metall Trans, 1988; 19A: 1767

[27] Delo D P, Piehler H R.  Acta Mater, 1999; 47: 2841

[28] Delo D P, Dutton R E, Semiatin S L, Piehler H R.  Acta Mater, 1999; 47: 3159
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!