Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 320-324    DOI: 10.3724/SP.J.1037.2012.00562
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti, C SOLID SOLUTION SUPERSATURATED Al-BASED COMPOSITE FILMS
SHANG Hailong 1, 2, SHEN Jie 1, YANG Duo 1, SUN Shiyang 1, LI Geyang 1
1)State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
2)School of Mechanical, Shanghai Dianji University, Shanghai 200245
Cite this article: 

SHANG Hailong,SHEN Jie,YANG Duo,SUN Shiyang,LI Geyang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti, C SOLID SOLUTION SUPERSATURATED Al-BASED COMPOSITE FILMS. Acta Metall Sin, 2013, 49(3): 320-324.

Download:  PDF(588KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Alloy films could form substitutionally supersaturated solute solution because of the non-equilibrium characteristics of physical vapor deposition (PVD) and gained grain refining and mechanical properties improving. In order to reveal the structure characteristics and strengthening effect of substitutionally and interstitially supersaturated solid solution films, a series of aluminum-based composite films with different Ti and C contents were synthesized by magnetron co-sputtering Al and TiC targets. EDS, XRD,TEM, STEM and nanoindenter were used to characterize the microstructure and mechanical properties of the composite films. The results showed that Ti and C dissolved in the grains with much higher solute contents than their solubility limits at thermodynamic equilibrium state and enriched at the boundary. The composite film formed “dual-supersaturated solid solution” exhibiting both substitutional and interstitial features. In lower solute contents, the grain size of the composite film decreased to less than 100 nm rapidly because of severe lattice distortion. The hardness of the film increased to 2.1 GPa from pure Al 1.3 GPa when containing 0.6%(Ti, C). With the increase of the solute contents, the film hardness increased gradually and achieved the highest value of 7.0 GPa when containing 6.4%(Ti, C). Then the composite film transformed into amorphous and its hardness also slightly reduced. The study showed significant grain refining and strengthening effects of dual-supersaturation of Ti and C in lower content on aluminum--based film and provided a way to improve the mechanical properties of metal films.

Key words:  Al-based composite film      microstructure      supersaturated solid solution      mechanical property      magnetron sputtering     
Received:  23 September 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00562     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/320

[1] Creus J, Berziou C, Cohendoz S, Perez A, Rebere C, Reffass M, Touzain S, Allely C, Gachon Y, Heau C,Sanchette F, Billard A.Corros Sci, 2012; 57: 162


[2] Leyland A, Matthews A.Surf Coat Technol, 2004; 177--178: 317

[3] Sanchette F, Ducros C, Billard A, Rebere C, Berziou C, Reffass M, Creus J.Thin Solid Films, 2009; 518: 1575

[4] Lewin E, Buchholt K, Lu J, Hultman L, Spetz L A, Jansson U.Thin Solid Films, 2010; 518: 5104

[5] Almtoft P K, Ejsing M A, Bφttiger J, Chevallier J.J Mater Res, 2007; 22: 1018

[6] El-Moneim A A, Akiyama E, Ismail M K, Hashimoto K.Corros Sci, 2011; 53: 2988

[7] Naka M, Maeda M, Shibayanagi T, Yuan H, Mori H.Vacuum, 2002; 65: 503

[8] Sanchette F, Billard A.Surf Coat Technol, 2001; 142: 218

[9] Perez A, Sanchette F, Billard A, Rebere C, Berziou C, Touzain S, Creus J.Mater Chem Phys, 2012; 132: 154

[10] Naka M, Shibayanag T, Maed M, Zhao S, Mori H.Vacuum, 2000; 59: 252

[11] Chandra T, Tsuzaki K, Militzer M, Ravindran C.Scr Mater, 2001; 44: 2035

[12] Boukhris N, Lallouche S, Debilia M Y, Draissia M.Eur Phys J Appl Phys, 2009; 45: 30501

[13] Draissia M, Boudemagh H, Debili Y M.Phys Scr, 2004; 69: 348

[14] Rupert J T, Trenkle C J, Schuh A C.Acta Mater, 2011; 59: 1619

[15] Mori M, Shibayanagi T, Maeda M, Naka M.Scr Mater, 2001; 44: 2035

[16] Mayrhofer H P, Mitterer C, Hultman L, Clemens H.Prog Mater Sci, 2006; 51: 1032

[17] Silva M, Wille C, Klement U, Choi P, Al-Kassab T.Mater Sci Eng, 2007; A445: 31

[18] Liu F.Appl Phys, 2005; 81A: 1095

[19] Pinkas M, Frage N, Froumin N, Pelleg J, Dariel M P.J Vac Sci Technol, 2002; 20A: 887

[20] Li X Y, Hua J D, Wang H Y, Guo Z X, Chumakov A N.Mater Sci Eng, 2007; A458: 235

[21] Meng Q P, Rong Y H, Hsu T Y.Mater Sci Eng, 2007; A471: 22

[22] Fleischer R L.The Strengthening of Metals. New York: Reinhold Publishing Corp, 1964: 93

[23] Labusch R.Phys Status Solidi, 1970; 41: 659

[24] Suzuki H.Dislocations and Mechanical Properties of Crystals. New York: Wiley, 1957: 361

[25] Meng Q P, Zhou N, Rong Y H, Chen S P, Hsu T Y (Xu Z Y).Acta Mater, 2002; 50: 4563

[26] Wu X L, Zhu Y T.Appl Phys, 2006; 89A: 031922

[27] Legros M, Gianola S D, Hemker J K.Acta Mater, 2008; 56: 3380

 
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!