Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 221-228    DOI: 10.3724/SP.J.1037.2012.00318
Current Issue | Archive | Adv Search |
CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION
WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei. CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION. Acta Metall Sin, 2013, 49(2): 221-228.

Download:  PDF(4460KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The good high temperature wear resistance and corrosion behavior of particle reinforced Ni-based alloy composite coating have attracted extensive attention in material science and engineering. It is necessary to analyze the morphologic characteristics and distribution of particles in composite coating. TiC particle reinforced NiCrBSi composite coating on medium carbon steel surface was fabricated by mechanical vibration assisted laser cladding technique. According to the distribution characteristics of hard phase particles in laser cladding molten pool, the growth morphology of TiC particle and endogenous M23C6 carbide, formation mechanism and its distribution characteristics in γ-Ni solid solution were analyzed by XRD, SEM and EDS. The results showed that most of TiC particles dissolved into the melted Ni-based alloy, but some supersaturated Ti and C atoms were precipitated in the form of TiC particles eutectic during cooling process. The TiC particles lateral growth with heterogeneous nucleation way depended on M23C6 type carbide substrate. At the same time, some composite carbide core-shell structure with (Ti, Cr, Ni, Fe, Si)C encapsulated TiC were generated in the coating. Under the effect of vibrant force, the bulky branch crystal eutectic structure disappeared in the bottom of laser cladding coating, the TiC particle floatation trend slowed down with the fluid stratosphere which caused by vibratory force and high-pressure gas, and some double and petal shape TiC particle clusters were also formed. The precipitated TiC particle increases with the Cr content in the inter-dendrite reticular (Fe, Ni) solid solution, and the average particle size was increased by more than 25%. The XRD results indicated that the diffraction peak intensity and lattice integrity of the main hard phases were enhanced, the half peak width was broadened and the crystalline grain size become smaller. The mechanical vibration promoted the dispersion of particles in the matrix dendrites and inter-dendrite.

Key words:  laser cladding      mechanical vibration      NiCrBSi-TiC composite coating      microstructure      growth mechanism     
Received:  30 May 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00318     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/221

[1] Sun R L, Mao J F, Yang D Z. Surf Coat Technol, 2002; 155: 203


[2] Lei Y W, Sun R L, Tang Y, Niu W. Opt Laser Technol, 2012; 44: 1141

[3] Fernandez E, Cadenas M, Gonzalez R, Navas C, Fernandez R,Damborenea J D. Wear, 2005; 259: 870

[4] Ma H B, Zhang W P. Rare Met Mater Eng, 2010; 39: 2189

(马海波, 张维平. 稀有金属材料与工程, 2010; 39: 2189)

[5] Wu C F, Ma M X, Wu A P, Liu W J, Zhong M L, Zhang W M, Zhang H J. Acta Metall Sin, 2009; 45: 1091

(吴朝锋, 马明星, 吴爱平, 刘文今, 钟敏霖, 张伟明, 张红军. 金属学报, 2009; 45: 1091)

[6] Lu X W, Lin X, Cao Y Q, Hu J, Gao B, Huang W D. Rare Met Mater Eng, 2011; 40: 714

(吕晓卫, 林鑫, 曹永青, 胡江, 高勃, 黄卫东. 稀有金属材料与工程, 2011; 40: 714)

[7] Yang S, Zhong M L, Liu W J. J Aero Mater, 2002; 22(1): 26

(杨森, 钟敏霖, 刘文今. 航空材料学报, 2002; 22(1): 26)

[8] Yang S, Liu W J, Zhong M L, Wang Z J. Mater Lett, 2004; 58: 2958

[9] Wang X H, Zhang M, Zou Z D, Qu S Y. Chin J Mech Eng, 2003; 39: 37

(王新洪, 张敏, 邹增大, 曲仕尧. 机械工程学报, 2003; 39: 37)

[10] Cui C Y, Guo Z X, Wang H Y, Hu J D. J Mater Process Technol, 2007; 183: 380

[11] Sun R L, Guo L X, Dong S L, Yang D Z. Chin J Lasers, 2001; 28: 275

(孙荣禄, 郭立新, 董尚利, 杨德庄. 中国激光, 2001; 28: 275)

[12] Sun R L, Yang D Z, Guo L X, Dong S L. Surf Coat Technol, 2001; 135: 307

[13] Wang C Q, Liu H X, Zhou R, Zhang X W, Zeng W H, Jiang Y H. Trans Mater Heat Treat, 2011; 32(7): 145

(王传琦, 刘洪喜, 周荣, 张晓伟, 曾维华, 蒋业华. 材料热处理学报, 2011; 32(7): 145)

[14] Zhang H, Shi Y, Kutsuna M, Xu G J. Nucl Eng Des, 2010; 240: 2691

[15] Guo C, Zhou J S, Chen J M, Zhao J R, Yu Y J, Zhou H D. Wear, 2011; 270: 492

[16] Wu X L, Chen G N. Acta Metall Sin, 1998; 34: 1284

(武晓雷, 陈光南. 金属学报, 1998; 34: 1284)

[17] Wang Z K, Zheng Q G, Tao Z Y, Ye H Q, Chen Q M. Acta Metall Sin, 1999; 35: 1027

(王忠柯, 郑启光, 陶曾毅, 叶和清, 陈清明. 金属学报, 1999; 35: 1027)

[18] Hu C, Barnard L, Mridha S, Baker T N. J Mater Process Technol, 1996; 58: 87

[19] Sun R L, Lu W X, Yang X J. J Chin Ceram Soc, 2005; 33: 1448

(孙荣禄, 吕伟鑫, 杨贤金. 硅酸盐学报, 2005; 33: 1448)

[20] Pei Y T. Acta Metall Sin, 1998; 34: 987

(裴宇韬. 金属学报, 1998; 34: 987)

[21] Kurz W, Fisher D J, translated by Li J G, Hu Q D.

 Fundamentals of Solidification. Beijing: Higher Education Press, 2010: 28

(Kurz W, Fisher D J 著, 李建国, 胡侨丹译. 凝固原理. 北京: 高等教育出版社, 2010: 28)

[22] Wang H M, Zhang J H, Tang Y J, Hu Z Q, Yukawa N, Morinaga M, Murata Y. Mater Sci Eng, 1992; A156: 109

[23] Chen Y, Wang H M. Rare Met Mater Eng, 2003; 32: 569

(陈瑶, 王华明. 稀有金属材料与工程, 2003; 32: 569)

[24] Fernandez R, Lecomte J C, Kattamis T Z. Metall Mater Trans, 1978; 9A: 1381

[25] Jackson K A. Mater Sci Eng, 1984; 65: 7

[26] Zhang S, Zhang C H, Kang Y P, Wu W T, Wang M C, Wen X Z. Chin J Nonferrous Met, 2001; 11: 1026

(张松, 张春华, 康煜平, 吴维?, 王茂才,文効忠. 中国有色金属学报, 2001; 11: 1026)

[27] Li Y X, Bai P K, Wang Y M, Hu J D, Guo Z X. Mater Des, 2009; 30: 140

 
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!